|
""" |
|
Source url: https://github.com/Karel911/TRACER |
|
Author: Min Seok Lee and Wooseok Shin |
|
License: Apache License 2.0 |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from carvekit.ml.arch.tracerb7.conv_modules import BasicConv2d, DWConv, DWSConv |
|
|
|
|
|
class RFB_Block(nn.Module): |
|
def __init__(self, in_channel, out_channel): |
|
super(RFB_Block, self).__init__() |
|
self.relu = nn.ReLU(True) |
|
self.branch0 = nn.Sequential( |
|
BasicConv2d(in_channel, out_channel, 1), |
|
) |
|
self.branch1 = nn.Sequential( |
|
BasicConv2d(in_channel, out_channel, 1), |
|
BasicConv2d(out_channel, out_channel, kernel_size=(1, 3), padding=(0, 1)), |
|
BasicConv2d(out_channel, out_channel, kernel_size=(3, 1), padding=(1, 0)), |
|
BasicConv2d(out_channel, out_channel, 3, padding=3, dilation=3), |
|
) |
|
self.branch2 = nn.Sequential( |
|
BasicConv2d(in_channel, out_channel, 1), |
|
BasicConv2d(out_channel, out_channel, kernel_size=(1, 5), padding=(0, 2)), |
|
BasicConv2d(out_channel, out_channel, kernel_size=(5, 1), padding=(2, 0)), |
|
BasicConv2d(out_channel, out_channel, 3, padding=5, dilation=5), |
|
) |
|
self.branch3 = nn.Sequential( |
|
BasicConv2d(in_channel, out_channel, 1), |
|
BasicConv2d(out_channel, out_channel, kernel_size=(1, 7), padding=(0, 3)), |
|
BasicConv2d(out_channel, out_channel, kernel_size=(7, 1), padding=(3, 0)), |
|
BasicConv2d(out_channel, out_channel, 3, padding=7, dilation=7), |
|
) |
|
self.conv_cat = BasicConv2d(4 * out_channel, out_channel, 3, padding=1) |
|
self.conv_res = BasicConv2d(in_channel, out_channel, 1) |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
x2 = self.branch2(x) |
|
x3 = self.branch3(x) |
|
x_cat = torch.cat((x0, x1, x2, x3), 1) |
|
x_cat = self.conv_cat(x_cat) |
|
|
|
x = self.relu(x_cat + self.conv_res(x)) |
|
return x |
|
|
|
|
|
class GlobalAvgPool(nn.Module): |
|
def __init__(self, flatten=False): |
|
super(GlobalAvgPool, self).__init__() |
|
self.flatten = flatten |
|
|
|
def forward(self, x): |
|
if self.flatten: |
|
in_size = x.size() |
|
return x.view((in_size[0], in_size[1], -1)).mean(dim=2) |
|
else: |
|
return ( |
|
x.view(x.size(0), x.size(1), -1) |
|
.mean(-1) |
|
.view(x.size(0), x.size(1), 1, 1) |
|
) |
|
|
|
|
|
class UnionAttentionModule(nn.Module): |
|
def __init__(self, n_channels, only_channel_tracing=False): |
|
super(UnionAttentionModule, self).__init__() |
|
self.GAP = GlobalAvgPool() |
|
self.confidence_ratio = 0.1 |
|
self.bn = nn.BatchNorm2d(n_channels) |
|
self.norm = nn.Sequential( |
|
nn.BatchNorm2d(n_channels), nn.Dropout3d(self.confidence_ratio) |
|
) |
|
self.channel_q = nn.Conv2d( |
|
in_channels=n_channels, |
|
out_channels=n_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=False, |
|
) |
|
self.channel_k = nn.Conv2d( |
|
in_channels=n_channels, |
|
out_channels=n_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=False, |
|
) |
|
self.channel_v = nn.Conv2d( |
|
in_channels=n_channels, |
|
out_channels=n_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=False, |
|
) |
|
|
|
self.fc = nn.Conv2d( |
|
in_channels=n_channels, |
|
out_channels=n_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=False, |
|
) |
|
|
|
if only_channel_tracing is False: |
|
self.spatial_q = nn.Conv2d( |
|
in_channels=n_channels, |
|
out_channels=1, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=False, |
|
) |
|
self.spatial_k = nn.Conv2d( |
|
in_channels=n_channels, |
|
out_channels=1, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=False, |
|
) |
|
self.spatial_v = nn.Conv2d( |
|
in_channels=n_channels, |
|
out_channels=1, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=False, |
|
) |
|
self.sigmoid = nn.Sigmoid() |
|
|
|
def masking(self, x, mask): |
|
mask = mask.squeeze(3).squeeze(2) |
|
threshold = torch.quantile( |
|
mask.float(), self.confidence_ratio, dim=-1, keepdim=True |
|
) |
|
mask[mask <= threshold] = 0.0 |
|
mask = mask.unsqueeze(2).unsqueeze(3) |
|
mask = mask.expand(-1, x.shape[1], x.shape[2], x.shape[3]).contiguous() |
|
masked_x = x * mask |
|
|
|
return masked_x |
|
|
|
def Channel_Tracer(self, x): |
|
avg_pool = self.GAP(x) |
|
x_norm = self.norm(avg_pool) |
|
|
|
q = self.channel_q(x_norm).squeeze(-1) |
|
k = self.channel_k(x_norm).squeeze(-1) |
|
v = self.channel_v(x_norm).squeeze(-1) |
|
|
|
|
|
QK_T = torch.matmul(q, k.transpose(1, 2)) |
|
alpha = F.softmax(QK_T, dim=-1) |
|
|
|
|
|
att = torch.matmul(alpha, v).unsqueeze(-1) |
|
att = self.fc(att) |
|
att = self.sigmoid(att) |
|
|
|
output = (x * att) + x |
|
alpha_mask = att.clone() |
|
|
|
return output, alpha_mask |
|
|
|
def forward(self, x): |
|
X_c, alpha_mask = self.Channel_Tracer(x) |
|
X_c = self.bn(X_c) |
|
x_drop = self.masking(X_c, alpha_mask) |
|
|
|
q = self.spatial_q(x_drop).squeeze(1) |
|
k = self.spatial_k(x_drop).squeeze(1) |
|
v = self.spatial_v(x_drop).squeeze(1) |
|
|
|
|
|
QK_T = torch.matmul(q, k.transpose(1, 2)) |
|
alpha = F.softmax(QK_T, dim=-1) |
|
|
|
output = torch.matmul(alpha, v).unsqueeze(1) + v.unsqueeze(1) |
|
|
|
return output |
|
|
|
|
|
class aggregation(nn.Module): |
|
def __init__(self, channel): |
|
super(aggregation, self).__init__() |
|
self.relu = nn.ReLU(True) |
|
|
|
self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) |
|
self.conv_upsample1 = BasicConv2d(channel[2], channel[1], 3, padding=1) |
|
self.conv_upsample2 = BasicConv2d(channel[2], channel[0], 3, padding=1) |
|
self.conv_upsample3 = BasicConv2d(channel[1], channel[0], 3, padding=1) |
|
self.conv_upsample4 = BasicConv2d(channel[2], channel[2], 3, padding=1) |
|
self.conv_upsample5 = BasicConv2d( |
|
channel[2] + channel[1], channel[2] + channel[1], 3, padding=1 |
|
) |
|
|
|
self.conv_concat2 = BasicConv2d( |
|
(channel[2] + channel[1]), (channel[2] + channel[1]), 3, padding=1 |
|
) |
|
self.conv_concat3 = BasicConv2d( |
|
(channel[0] + channel[1] + channel[2]), |
|
(channel[0] + channel[1] + channel[2]), |
|
3, |
|
padding=1, |
|
) |
|
|
|
self.UAM = UnionAttentionModule(channel[0] + channel[1] + channel[2]) |
|
|
|
def forward(self, e4, e3, e2): |
|
e4_1 = e4 |
|
e3_1 = self.conv_upsample1(self.upsample(e4)) * e3 |
|
e2_1 = ( |
|
self.conv_upsample2(self.upsample(self.upsample(e4))) |
|
* self.conv_upsample3(self.upsample(e3)) |
|
* e2 |
|
) |
|
|
|
e3_2 = torch.cat((e3_1, self.conv_upsample4(self.upsample(e4_1))), 1) |
|
e3_2 = self.conv_concat2(e3_2) |
|
|
|
e2_2 = torch.cat((e2_1, self.conv_upsample5(self.upsample(e3_2))), 1) |
|
x = self.conv_concat3(e2_2) |
|
|
|
output = self.UAM(x) |
|
|
|
return output |
|
|
|
|
|
class ObjectAttention(nn.Module): |
|
def __init__(self, channel, kernel_size): |
|
super(ObjectAttention, self).__init__() |
|
self.channel = channel |
|
self.DWSConv = DWSConv( |
|
channel, channel // 2, kernel=kernel_size, padding=1, kernels_per_layer=1 |
|
) |
|
self.DWConv1 = nn.Sequential( |
|
DWConv(channel // 2, channel // 2, kernel=1, padding=0, dilation=1), |
|
BasicConv2d(channel // 2, channel // 8, 1), |
|
) |
|
self.DWConv2 = nn.Sequential( |
|
DWConv(channel // 2, channel // 2, kernel=3, padding=1, dilation=1), |
|
BasicConv2d(channel // 2, channel // 8, 1), |
|
) |
|
self.DWConv3 = nn.Sequential( |
|
DWConv(channel // 2, channel // 2, kernel=3, padding=3, dilation=3), |
|
BasicConv2d(channel // 2, channel // 8, 1), |
|
) |
|
self.DWConv4 = nn.Sequential( |
|
DWConv(channel // 2, channel // 2, kernel=3, padding=5, dilation=5), |
|
BasicConv2d(channel // 2, channel // 8, 1), |
|
) |
|
self.conv1 = BasicConv2d(channel // 2, 1, 1) |
|
|
|
def forward(self, decoder_map, encoder_map): |
|
""" |
|
Args: |
|
decoder_map: decoder representation (B, 1, H, W). |
|
encoder_map: encoder block output (B, C, H, W). |
|
Returns: |
|
decoder representation: (B, 1, H, W) |
|
""" |
|
mask_bg = -1 * torch.sigmoid(decoder_map) + 1 |
|
mask_ob = torch.sigmoid(decoder_map) |
|
x = mask_ob.expand(-1, self.channel, -1, -1).mul(encoder_map) |
|
|
|
edge = mask_bg.clone() |
|
edge[edge > 0.93] = 0 |
|
x = x + (edge * encoder_map) |
|
|
|
x = self.DWSConv(x) |
|
skip = x.clone() |
|
x = ( |
|
torch.cat( |
|
[self.DWConv1(x), self.DWConv2(x), self.DWConv3(x), self.DWConv4(x)], |
|
dim=1, |
|
) |
|
+ skip |
|
) |
|
x = torch.relu(self.conv1(x)) |
|
|
|
return x + decoder_map |
|
|