jayparmr's picture
Upload 118 files
19b3da3
raw
history blame
1.24 kB
import torch
from torch.autograd import Variable
import numpy as np
import collections
__all__ = ['as_variable', 'as_numpy', 'mark_volatile']
def as_variable(obj):
if isinstance(obj, Variable):
return obj
if isinstance(obj, collections.Sequence):
return [as_variable(v) for v in obj]
elif isinstance(obj, collections.Mapping):
return {k: as_variable(v) for k, v in obj.items()}
else:
return Variable(obj)
def as_numpy(obj):
if isinstance(obj, collections.Sequence):
return [as_numpy(v) for v in obj]
elif isinstance(obj, collections.Mapping):
return {k: as_numpy(v) for k, v in obj.items()}
elif isinstance(obj, Variable):
return obj.data.cpu().numpy()
elif torch.is_tensor(obj):
return obj.cpu().numpy()
else:
return np.array(obj)
def mark_volatile(obj):
if torch.is_tensor(obj):
obj = Variable(obj)
if isinstance(obj, Variable):
obj.no_grad = True
return obj
elif isinstance(obj, collections.Mapping):
return {k: mark_volatile(o) for k, o in obj.items()}
elif isinstance(obj, collections.Sequence):
return [mark_volatile(o) for o in obj]
else:
return obj