|
import os |
|
from typing import Optional, List, Type |
|
import torch |
|
from external.llite.library import sdxl_original_unet |
|
|
|
|
|
|
|
SKIP_INPUT_BLOCKS = False |
|
|
|
|
|
SKIP_OUTPUT_BLOCKS = True |
|
|
|
|
|
SKIP_CONV2D = False |
|
|
|
|
|
|
|
TRANSFORMER_ONLY = True |
|
|
|
|
|
ATTN1_2_ONLY = True |
|
|
|
|
|
ATTN_QKV_ONLY = True |
|
|
|
|
|
|
|
ATTN1_ETC_ONLY = False |
|
|
|
|
|
|
|
TRANSFORMER_MAX_BLOCK_INDEX = None |
|
|
|
|
|
class LLLiteModule(torch.nn.Module): |
|
def __init__(self, depth, cond_emb_dim, name, org_module, mlp_dim, dropout=None, multiplier=1.0): |
|
super().__init__() |
|
|
|
self.is_conv2d = org_module.__class__.__name__ == "Conv2d" |
|
self.lllite_name = name |
|
self.cond_emb_dim = cond_emb_dim |
|
self.org_module = [org_module] |
|
self.dropout = dropout |
|
self.multiplier = multiplier |
|
|
|
if self.is_conv2d: |
|
in_dim = org_module.in_channels |
|
else: |
|
in_dim = org_module.in_features |
|
|
|
|
|
|
|
modules = [] |
|
modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) |
|
if depth == 1: |
|
modules.append(torch.nn.ReLU(inplace=True)) |
|
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0)) |
|
elif depth == 2: |
|
modules.append(torch.nn.ReLU(inplace=True)) |
|
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0)) |
|
elif depth == 3: |
|
|
|
modules.append(torch.nn.ReLU(inplace=True)) |
|
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) |
|
modules.append(torch.nn.ReLU(inplace=True)) |
|
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0)) |
|
|
|
self.conditioning1 = torch.nn.Sequential(*modules) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.is_conv2d: |
|
self.down = torch.nn.Sequential( |
|
torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0), |
|
torch.nn.ReLU(inplace=True), |
|
) |
|
self.mid = torch.nn.Sequential( |
|
torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0), |
|
torch.nn.ReLU(inplace=True), |
|
) |
|
self.up = torch.nn.Sequential( |
|
torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0), |
|
) |
|
else: |
|
|
|
self.down = torch.nn.Sequential( |
|
torch.nn.Linear(in_dim, mlp_dim), |
|
torch.nn.ReLU(inplace=True), |
|
) |
|
self.mid = torch.nn.Sequential( |
|
torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim), |
|
torch.nn.ReLU(inplace=True), |
|
) |
|
self.up = torch.nn.Sequential( |
|
torch.nn.Linear(mlp_dim, in_dim), |
|
) |
|
|
|
|
|
torch.nn.init.zeros_(self.up[0].weight) |
|
|
|
self.depth = depth |
|
self.cond_emb = None |
|
self.batch_cond_only = False |
|
self.use_zeros_for_batch_uncond = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_cond_image(self, cond_image): |
|
r""" |
|
中でモデルを呼び出すので必要ならwith torch.no_grad()で囲む |
|
/ call the model inside, so if necessary, surround it with torch.no_grad() |
|
""" |
|
if cond_image is None: |
|
self.cond_emb = None |
|
return |
|
|
|
|
|
|
|
cx = self.conditioning1(cond_image) |
|
if not self.is_conv2d: |
|
|
|
n, c, h, w = cx.shape |
|
cx = cx.view(n, c, h * w).permute(0, 2, 1) |
|
self.cond_emb = cx |
|
|
|
def set_batch_cond_only(self, cond_only, zeros): |
|
self.batch_cond_only = cond_only |
|
self.use_zeros_for_batch_uncond = zeros |
|
|
|
def apply_to(self): |
|
self.org_forward = self.org_module[0].forward |
|
self.org_module[0].forward = self.forward |
|
|
|
def forward(self, x): |
|
r""" |
|
学習用の便利forward。元のモジュールのforwardを呼び出す |
|
/ convenient forward for training. call the forward of the original module |
|
""" |
|
if self.multiplier == 0.0 or self.cond_emb is None: |
|
return self.org_forward(x) |
|
|
|
cx = self.cond_emb |
|
|
|
if not self.batch_cond_only and x.shape[0] // 2 == cx.shape[0]: |
|
cx = cx.repeat(2, 1, 1, 1) if self.is_conv2d else cx.repeat(2, 1, 1) |
|
if self.use_zeros_for_batch_uncond: |
|
cx[0::2] = 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cx = torch.cat([cx, self.down(x if not self.batch_cond_only else x[1::2])], dim=1 if self.is_conv2d else 2) |
|
cx = self.mid(cx) |
|
|
|
if self.dropout is not None and self.training: |
|
cx = torch.nn.functional.dropout(cx, p=self.dropout) |
|
|
|
cx = self.up(cx) * self.multiplier |
|
|
|
|
|
if self.batch_cond_only: |
|
zx = torch.zeros_like(x) |
|
zx[1::2] += cx |
|
cx = zx |
|
|
|
x = self.org_forward(x + cx) |
|
return x |
|
|
|
|
|
class ControlNetLLLite(torch.nn.Module): |
|
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"] |
|
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] |
|
|
|
def __init__( |
|
self, |
|
unet: sdxl_original_unet.SdxlUNet2DConditionModel, |
|
cond_emb_dim: int = 16, |
|
mlp_dim: int = 16, |
|
dropout: Optional[float] = None, |
|
varbose: Optional[bool] = False, |
|
multiplier: Optional[float] = 1.0, |
|
) -> None: |
|
super().__init__() |
|
|
|
|
|
def create_modules( |
|
root_module: torch.nn.Module, |
|
target_replace_modules: List[torch.nn.Module], |
|
module_class: Type[object], |
|
) -> List[torch.nn.Module]: |
|
prefix = "lllite_unet" |
|
|
|
modules = [] |
|
for name, module in root_module.named_modules(): |
|
if module.__class__.__name__ in target_replace_modules: |
|
for child_name, child_module in module.named_modules(): |
|
is_linear = child_module.__class__.__name__ == "Linear" |
|
is_conv2d = child_module.__class__.__name__ == "Conv2d" |
|
if is_linear or (is_conv2d and not SKIP_CONV2D): |
|
|
|
|
|
block_name, index1, index2 = (name + "." + child_name).split(".")[:3] |
|
index1 = int(index1) |
|
if block_name == "input_blocks": |
|
if SKIP_INPUT_BLOCKS: |
|
continue |
|
depth = 1 if index1 <= 2 else (2 if index1 <= 5 else 3) |
|
elif block_name == "middle_block": |
|
depth = 3 |
|
elif block_name == "output_blocks": |
|
if SKIP_OUTPUT_BLOCKS: |
|
continue |
|
depth = 3 if index1 <= 2 else (2 if index1 <= 5 else 1) |
|
if int(index2) >= 2: |
|
depth -= 1 |
|
else: |
|
raise NotImplementedError() |
|
|
|
lllite_name = prefix + "." + name + "." + child_name |
|
lllite_name = lllite_name.replace(".", "_") |
|
|
|
if TRANSFORMER_MAX_BLOCK_INDEX is not None: |
|
p = lllite_name.find("transformer_blocks") |
|
if p >= 0: |
|
tf_index = int(lllite_name[p:].split("_")[2]) |
|
if tf_index > TRANSFORMER_MAX_BLOCK_INDEX: |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
if "emb_layers" in lllite_name or ( |
|
"attn2" in lllite_name and ("to_k" in lllite_name or "to_v" in lllite_name) |
|
): |
|
continue |
|
|
|
if ATTN1_2_ONLY: |
|
if not ("attn1" in lllite_name or "attn2" in lllite_name): |
|
continue |
|
if ATTN_QKV_ONLY: |
|
if "to_out" in lllite_name: |
|
continue |
|
|
|
if ATTN1_ETC_ONLY: |
|
if "proj_out" in lllite_name: |
|
pass |
|
elif "attn1" in lllite_name and ( |
|
"to_k" in lllite_name or "to_v" in lllite_name or "to_out" in lllite_name |
|
): |
|
pass |
|
elif "ff_net_2" in lllite_name: |
|
pass |
|
else: |
|
continue |
|
|
|
module = module_class( |
|
depth, |
|
cond_emb_dim, |
|
lllite_name, |
|
child_module, |
|
mlp_dim, |
|
dropout=dropout, |
|
multiplier=multiplier, |
|
) |
|
modules.append(module) |
|
print(f"Returning {len(modules)} modules for llite net") |
|
return modules |
|
|
|
target_modules = ControlNetLLLite.UNET_TARGET_REPLACE_MODULE |
|
if not TRANSFORMER_ONLY: |
|
target_modules = target_modules + ControlNetLLLite.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 |
|
|
|
|
|
self.unet_modules: List[LLLiteModule] = create_modules(unet, target_modules, LLLiteModule) |
|
print(f"created ControlNet LLLite for U-Net: {len(self.unet_modules)} modules.") |
|
|
|
def forward(self, x): |
|
return x |
|
|
|
def set_cond_image(self, cond_image): |
|
r""" |
|
中でモデルを呼び出すので必要ならwith torch.no_grad()で囲む |
|
/ call the model inside, so if necessary, surround it with torch.no_grad() |
|
""" |
|
for module in self.unet_modules: |
|
module.set_cond_image(cond_image) |
|
|
|
def set_batch_cond_only(self, cond_only, zeros): |
|
for module in self.unet_modules: |
|
module.set_batch_cond_only(cond_only, zeros) |
|
|
|
def set_multiplier(self, multiplier): |
|
for module in self.unet_modules: |
|
module.multiplier = multiplier |
|
|
|
def load_weights(self, file): |
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import load_file |
|
|
|
weights_sd = load_file(file) |
|
else: |
|
weights_sd = torch.load(file, map_location="cpu") |
|
|
|
info = self.load_state_dict(weights_sd, False) |
|
return info |
|
|
|
def apply_to(self): |
|
print("applying LLLite for U-Net...") |
|
for module in self.unet_modules: |
|
module.apply_to() |
|
self.add_module(module.lllite_name, module) |
|
|
|
|
|
def is_mergeable(self): |
|
return False |
|
|
|
def merge_to(self, text_encoder, unet, weights_sd, dtype, device): |
|
raise NotImplementedError() |
|
|
|
def enable_gradient_checkpointing(self): |
|
|
|
pass |
|
|
|
def prepare_optimizer_params(self): |
|
self.requires_grad_(True) |
|
return self.parameters() |
|
|
|
def prepare_grad_etc(self): |
|
self.requires_grad_(True) |
|
|
|
def on_epoch_start(self): |
|
self.train() |
|
|
|
def get_trainable_params(self): |
|
return self.parameters() |
|
|
|
def save_weights(self, file, dtype, metadata): |
|
if metadata is not None and len(metadata) == 0: |
|
metadata = None |
|
|
|
state_dict = self.state_dict() |
|
|
|
if dtype is not None: |
|
for key in list(state_dict.keys()): |
|
v = state_dict[key] |
|
v = v.detach().clone().to("cpu").to(dtype) |
|
state_dict[key] = v |
|
|
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import save_file |
|
|
|
save_file(state_dict, file, metadata) |
|
else: |
|
torch.save(state_dict, file) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
|
|
|
print("create unet") |
|
unet = sdxl_original_unet.SdxlUNet2DConditionModel() |
|
unet.to("cuda").to(torch.float16) |
|
|
|
print("create ControlNet-LLLite") |
|
control_net = ControlNetLLLite(unet, 32, 64) |
|
control_net.apply_to() |
|
control_net.to("cuda") |
|
|
|
print(control_net) |
|
|
|
|
|
print("number of parameters", sum(p.numel() for p in control_net.parameters() if p.requires_grad)) |
|
|
|
input() |
|
|
|
unet.set_use_memory_efficient_attention(True, False) |
|
unet.set_gradient_checkpointing(True) |
|
unet.train() |
|
|
|
control_net.train() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import bitsandbytes |
|
|
|
optimizer = bitsandbytes.adam.Adam8bit(control_net.prepare_optimizer_params(), 1e-3) |
|
|
|
scaler = torch.cuda.amp.GradScaler(enabled=True) |
|
|
|
print("start training") |
|
steps = 10 |
|
|
|
sample_param = [p for p in control_net.named_parameters() if "up" in p[0]][0] |
|
for step in range(steps): |
|
print(f"step {step}") |
|
|
|
batch_size = 1 |
|
conditioning_image = torch.rand(batch_size, 3, 1024, 1024).cuda() * 2.0 - 1.0 |
|
x = torch.randn(batch_size, 4, 128, 128).cuda() |
|
t = torch.randint(low=0, high=10, size=(batch_size,)).cuda() |
|
ctx = torch.randn(batch_size, 77, 2048).cuda() |
|
y = torch.randn(batch_size, sdxl_original_unet.ADM_IN_CHANNELS).cuda() |
|
|
|
with torch.cuda.amp.autocast(enabled=True): |
|
control_net.set_cond_image(conditioning_image) |
|
|
|
output = unet(x, t, ctx, y) |
|
target = torch.randn_like(output) |
|
loss = torch.nn.functional.mse_loss(output, target) |
|
|
|
scaler.scale(loss).backward() |
|
scaler.step(optimizer) |
|
scaler.update() |
|
optimizer.zero_grad(set_to_none=True) |
|
print(sample_param) |
|
|
|
|
|
|
|
|
|
|