CM2000112 / internals /pipelines /sdxl_tile_upscale.py
jayparmr's picture
Upload folder using huggingface_hub
22df957 verified
raw
history blame
4.16 kB
import torch
from diffusers import ControlNetModel
from PIL import Image
from torchvision import transforms
import internals.util.image as ImageUtils
from carvekit.api import high
from internals.data.result import Result
from internals.pipelines.commons import AbstractPipeline, Text2Img
from internals.pipelines.controlnets import ControlNet
from internals.pipelines.demofusion_sdxl import DemoFusionSDXLControlNetPipeline
from internals.pipelines.high_res import HighRes
from internals.util.cache import clear_cuda_and_gc
from internals.util.commons import download_image
from internals.util.config import get_base_dimension
controlnet = ControlNet()
class SDXLTileUpscaler(AbstractPipeline):
__loaded = False
def create(self, high_res: HighRes, pipeline: Text2Img, model_id: int):
if self.__loaded:
return
# temporal hack for upscale model till multicontrolnet support is added
model = (
"thibaud/controlnet-openpose-sdxl-1.0"
if int(model_id) == 2000293
else "diffusers/controlnet-canny-sdxl-1.0"
)
controlnet = ControlNetModel.from_pretrained(model, torch_dtype=torch.float16)
pipe = DemoFusionSDXLControlNetPipeline(
**pipeline.pipe.components, controlnet=controlnet
)
pipe = pipe.to("cuda")
pipe.enable_vae_tiling()
pipe.enable_vae_slicing()
pipe.enable_xformers_memory_efficient_attention()
self.high_res = high_res
self.pipe = pipe
self.__loaded = True
def unload(self):
self.__loaded = False
self.pipe = None
self.high_res = None
clear_cuda_and_gc()
def process(
self,
prompt: str,
imageUrl: str,
resize_dimension: int,
negative_prompt: str,
width: int,
height: int,
model_id: int,
):
if int(model_id) == 2000293:
condition_image = controlnet.detect_pose(imageUrl)
else:
condition_image = download_image(imageUrl)
condition_image = ControlNet.canny_detect_edge(condition_image)
img = download_image(imageUrl).resize((width, height))
img = ImageUtils.resize_image(img, get_base_dimension())
condition_image = condition_image.resize(img.size)
img2 = self.__resize_for_condition_image(img, resize_dimension)
image_lr = self.load_and_process_image(img)
print("img", img2.size, img.size)
if int(model_id) == 2000173:
kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"image": img2,
"strength": 0.3,
"num_inference_steps": 30,
}
images = self.high_res.pipe.__call__(**kwargs).images
else:
images = self.pipe.__call__(
image_lr=image_lr,
prompt=prompt,
condition_image=condition_image,
negative_prompt="blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
guidance_scale=11,
sigma=0.8,
num_inference_steps=24,
width=img2.size[0],
height=img2.size[1],
)
images = images[::-1]
return images, False
def load_and_process_image(self, pil_image):
transform = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
image = transform(pil_image)
image = image.unsqueeze(0).half()
image = image.to("cuda")
return image
def __resize_for_condition_image(self, image: Image.Image, resolution: int):
input_image = image.convert("RGB")
W, H = input_image.size
k = float(resolution) / max(W, H)
H *= k
W *= k
H = int(round(H / 64.0)) * 64
W = int(round(W / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
return img