|
|
|
|
|
|
|
|
|
import argparse |
|
import json |
|
import os |
|
import time |
|
import torch |
|
from safetensors.torch import load_file, save_file |
|
from tqdm import tqdm |
|
from library import sai_model_spec, model_util, sdxl_model_util |
|
import lora |
|
|
|
|
|
|
|
|
|
|
|
|
|
def save_to_file(file_name, model, state_dict, dtype): |
|
if dtype is not None: |
|
for key in list(state_dict.keys()): |
|
if type(state_dict[key]) == torch.Tensor: |
|
state_dict[key] = state_dict[key].to(dtype) |
|
|
|
if os.path.splitext(file_name)[1] == ".safetensors": |
|
save_file(model, file_name) |
|
else: |
|
torch.save(model, file_name) |
|
|
|
|
|
def svd( |
|
model_org=None, |
|
model_tuned=None, |
|
save_to=None, |
|
dim=4, |
|
v2=None, |
|
sdxl=None, |
|
conv_dim=None, |
|
v_parameterization=None, |
|
device=None, |
|
save_precision=None, |
|
clamp_quantile=0.99, |
|
min_diff=0.01, |
|
no_metadata=False, |
|
): |
|
def str_to_dtype(p): |
|
if p == "float": |
|
return torch.float |
|
if p == "fp16": |
|
return torch.float16 |
|
if p == "bf16": |
|
return torch.bfloat16 |
|
return None |
|
|
|
assert v2 != sdxl or (not v2 and not sdxl), "v2 and sdxl cannot be specified at the same time / v2とsdxlは同時に指定できません" |
|
if v_parameterization is None: |
|
v_parameterization = v2 |
|
|
|
save_dtype = str_to_dtype(save_precision) |
|
|
|
|
|
if not sdxl: |
|
print(f"loading original SD model : {model_org}") |
|
text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(v2, model_org) |
|
text_encoders_o = [text_encoder_o] |
|
print(f"loading tuned SD model : {model_tuned}") |
|
text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(v2, model_tuned) |
|
text_encoders_t = [text_encoder_t] |
|
model_version = model_util.get_model_version_str_for_sd1_sd2(v2, v_parameterization) |
|
else: |
|
print(f"loading original SDXL model : {model_org}") |
|
text_encoder_o1, text_encoder_o2, _, unet_o, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint( |
|
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, model_org, "cpu" |
|
) |
|
text_encoders_o = [text_encoder_o1, text_encoder_o2] |
|
print(f"loading original SDXL model : {model_tuned}") |
|
text_encoder_t1, text_encoder_t2, _, unet_t, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint( |
|
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, model_tuned, "cpu" |
|
) |
|
text_encoders_t = [text_encoder_t1, text_encoder_t2] |
|
model_version = sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0 |
|
|
|
|
|
if conv_dim is None: |
|
kwargs = {} |
|
else: |
|
kwargs = {"conv_dim": conv_dim, "conv_alpha": conv_dim} |
|
|
|
lora_network_o = lora.create_network(1.0, dim, dim, None, text_encoders_o, unet_o, **kwargs) |
|
lora_network_t = lora.create_network(1.0, dim, dim, None, text_encoders_t, unet_t, **kwargs) |
|
assert len(lora_network_o.text_encoder_loras) == len( |
|
lora_network_t.text_encoder_loras |
|
), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) " |
|
|
|
|
|
diffs = {} |
|
text_encoder_different = False |
|
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)): |
|
lora_name = lora_o.lora_name |
|
module_o = lora_o.org_module |
|
module_t = lora_t.org_module |
|
diff = module_t.weight - module_o.weight |
|
|
|
|
|
if not text_encoder_different and torch.max(torch.abs(diff)) > min_diff: |
|
text_encoder_different = True |
|
print(f"Text encoder is different. {torch.max(torch.abs(diff))} > {min_diff}") |
|
|
|
diff = diff.float() |
|
diffs[lora_name] = diff |
|
|
|
if not text_encoder_different: |
|
print("Text encoder is same. Extract U-Net only.") |
|
lora_network_o.text_encoder_loras = [] |
|
diffs = {} |
|
|
|
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)): |
|
lora_name = lora_o.lora_name |
|
module_o = lora_o.org_module |
|
module_t = lora_t.org_module |
|
diff = module_t.weight - module_o.weight |
|
diff = diff.float() |
|
|
|
if args.device: |
|
diff = diff.to(args.device) |
|
|
|
diffs[lora_name] = diff |
|
|
|
|
|
print("calculating by svd") |
|
lora_weights = {} |
|
with torch.no_grad(): |
|
for lora_name, mat in tqdm(list(diffs.items())): |
|
|
|
conv2d = len(mat.size()) == 4 |
|
kernel_size = None if not conv2d else mat.size()[2:4] |
|
conv2d_3x3 = conv2d and kernel_size != (1, 1) |
|
|
|
rank = dim if not conv2d_3x3 or conv_dim is None else conv_dim |
|
out_dim, in_dim = mat.size()[0:2] |
|
|
|
if device: |
|
mat = mat.to(device) |
|
|
|
|
|
rank = min(rank, in_dim, out_dim) |
|
|
|
if conv2d: |
|
if conv2d_3x3: |
|
mat = mat.flatten(start_dim=1) |
|
else: |
|
mat = mat.squeeze() |
|
|
|
U, S, Vh = torch.linalg.svd(mat) |
|
|
|
U = U[:, :rank] |
|
S = S[:rank] |
|
U = U @ torch.diag(S) |
|
|
|
Vh = Vh[:rank, :] |
|
|
|
dist = torch.cat([U.flatten(), Vh.flatten()]) |
|
hi_val = torch.quantile(dist, clamp_quantile) |
|
low_val = -hi_val |
|
|
|
U = U.clamp(low_val, hi_val) |
|
Vh = Vh.clamp(low_val, hi_val) |
|
|
|
if conv2d: |
|
U = U.reshape(out_dim, rank, 1, 1) |
|
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1]) |
|
|
|
U = U.to("cpu").contiguous() |
|
Vh = Vh.to("cpu").contiguous() |
|
|
|
lora_weights[lora_name] = (U, Vh) |
|
|
|
|
|
lora_sd = {} |
|
for lora_name, (up_weight, down_weight) in lora_weights.items(): |
|
lora_sd[lora_name + ".lora_up.weight"] = up_weight |
|
lora_sd[lora_name + ".lora_down.weight"] = down_weight |
|
lora_sd[lora_name + ".alpha"] = torch.tensor(down_weight.size()[0]) |
|
|
|
|
|
lora_network_save, lora_sd = lora.create_network_from_weights(1.0, None, None, text_encoders_o, unet_o, weights_sd=lora_sd) |
|
lora_network_save.apply_to(text_encoders_o, unet_o) |
|
|
|
info = lora_network_save.load_state_dict(lora_sd) |
|
print(f"Loading extracted LoRA weights: {info}") |
|
|
|
dir_name = os.path.dirname(save_to) |
|
if dir_name and not os.path.exists(dir_name): |
|
os.makedirs(dir_name, exist_ok=True) |
|
|
|
|
|
net_kwargs = {} |
|
if conv_dim is not None: |
|
net_kwargs["conv_dim"] = str(conv_dim) |
|
net_kwargs["conv_alpha"] = str(float(conv_dim)) |
|
|
|
metadata = { |
|
"ss_v2": str(v2), |
|
"ss_base_model_version": model_version, |
|
"ss_network_module": "networks.lora", |
|
"ss_network_dim": str(dim), |
|
"ss_network_alpha": str(float(dim)), |
|
"ss_network_args": json.dumps(net_kwargs), |
|
} |
|
|
|
if not no_metadata: |
|
title = os.path.splitext(os.path.basename(save_to))[0] |
|
sai_metadata = sai_model_spec.build_metadata(None, v2, v_parameterization, sdxl, True, False, time.time(), title=title) |
|
metadata.update(sai_metadata) |
|
|
|
lora_network_save.save_weights(save_to, save_dtype, metadata) |
|
print(f"LoRA weights are saved to: {save_to}") |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--v2", action="store_true", help="load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む") |
|
parser.add_argument( |
|
"--v_parameterization", |
|
action="store_true", |
|
default=None, |
|
help="make LoRA metadata for v-parameterization (default is same to v2) / 作成するLoRAのメタデータにv-parameterization用と設定する(省略時はv2と同じ)", |
|
) |
|
parser.add_argument( |
|
"--sdxl", action="store_true", help="load Stable Diffusion SDXL base model / Stable Diffusion SDXL baseのモデルを読み込む" |
|
) |
|
parser.add_argument( |
|
"--save_precision", |
|
type=str, |
|
default=None, |
|
choices=[None, "float", "fp16", "bf16"], |
|
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat", |
|
) |
|
parser.add_argument( |
|
"--model_org", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Stable Diffusion original model: ckpt or safetensors file / 元モデル、ckptまたはsafetensors", |
|
) |
|
parser.add_argument( |
|
"--model_tuned", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Stable Diffusion tuned model, LoRA is difference of `original to tuned`: ckpt or safetensors file / 派生モデル(生成されるLoRAは元→派生の差分になります)、ckptまたはsafetensors", |
|
) |
|
parser.add_argument( |
|
"--save_to", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors", |
|
) |
|
parser.add_argument("--dim", type=int, default=4, help="dimension (rank) of LoRA (default 4) / LoRAの次元数(rank)(デフォルト4)") |
|
parser.add_argument( |
|
"--conv_dim", |
|
type=int, |
|
default=None, |
|
help="dimension (rank) of LoRA for Conv2d-3x3 (default None, disabled) / LoRAのConv2d-3x3の次元数(rank)(デフォルトNone、適用なし)", |
|
) |
|
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う") |
|
parser.add_argument( |
|
"--clamp_quantile", |
|
type=float, |
|
default=0.99, |
|
help="Quantile clamping value, float, (0-1). Default = 0.99 / 値をクランプするための分位点、float、(0-1)。デフォルトは0.99", |
|
) |
|
parser.add_argument( |
|
"--min_diff", |
|
type=float, |
|
default=0.01, |
|
help="Minimum difference between finetuned model and base to consider them different enough to extract, float, (0-1). Default = 0.01 /" |
|
+ "LoRAを抽出するために元モデルと派生モデルの差分の最小値、float、(0-1)。デフォルトは0.01", |
|
) |
|
parser.add_argument( |
|
"--no_metadata", |
|
action="store_true", |
|
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / " |
|
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)", |
|
) |
|
|
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
svd(**vars(args)) |
|
|