|
import torch |
|
from accelerate import init_empty_weights |
|
from accelerate.utils.modeling import set_module_tensor_to_device |
|
from safetensors.torch import load_file, save_file |
|
from transformers import CLIPTextModel, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer |
|
from typing import List |
|
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel |
|
from external.llite.library import model_util |
|
from external.llite.library import sdxl_original_unet |
|
|
|
|
|
VAE_SCALE_FACTOR = 0.13025 |
|
MODEL_VERSION_SDXL_BASE_V1_0 = "sdxl_base_v1-0" |
|
|
|
|
|
DIFFUSERS_REF_MODEL_ID_SDXL = "stabilityai/stable-diffusion-xl-base-1.0" |
|
|
|
DIFFUSERS_SDXL_UNET_CONFIG = { |
|
"act_fn": "silu", |
|
"addition_embed_type": "text_time", |
|
"addition_embed_type_num_heads": 64, |
|
"addition_time_embed_dim": 256, |
|
"attention_head_dim": [5, 10, 20], |
|
"block_out_channels": [320, 640, 1280], |
|
"center_input_sample": False, |
|
"class_embed_type": None, |
|
"class_embeddings_concat": False, |
|
"conv_in_kernel": 3, |
|
"conv_out_kernel": 3, |
|
"cross_attention_dim": 2048, |
|
"cross_attention_norm": None, |
|
"down_block_types": ["DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"], |
|
"downsample_padding": 1, |
|
"dual_cross_attention": False, |
|
"encoder_hid_dim": None, |
|
"encoder_hid_dim_type": None, |
|
"flip_sin_to_cos": True, |
|
"freq_shift": 0, |
|
"in_channels": 4, |
|
"layers_per_block": 2, |
|
"mid_block_only_cross_attention": None, |
|
"mid_block_scale_factor": 1, |
|
"mid_block_type": "UNetMidBlock2DCrossAttn", |
|
"norm_eps": 1e-05, |
|
"norm_num_groups": 32, |
|
"num_attention_heads": None, |
|
"num_class_embeds": None, |
|
"only_cross_attention": False, |
|
"out_channels": 4, |
|
"projection_class_embeddings_input_dim": 2816, |
|
"resnet_out_scale_factor": 1.0, |
|
"resnet_skip_time_act": False, |
|
"resnet_time_scale_shift": "default", |
|
"sample_size": 128, |
|
"time_cond_proj_dim": None, |
|
"time_embedding_act_fn": None, |
|
"time_embedding_dim": None, |
|
"time_embedding_type": "positional", |
|
"timestep_post_act": None, |
|
"transformer_layers_per_block": [1, 2, 10], |
|
"up_block_types": ["CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"], |
|
"upcast_attention": False, |
|
"use_linear_projection": True, |
|
} |
|
|
|
|
|
def convert_sdxl_text_encoder_2_checkpoint(checkpoint, max_length): |
|
SDXL_KEY_PREFIX = "conditioner.embedders.1.model." |
|
|
|
|
|
|
|
def convert_key(key): |
|
|
|
key = key.replace(SDXL_KEY_PREFIX + "transformer.", "text_model.encoder.") |
|
key = key.replace(SDXL_KEY_PREFIX, "text_model.") |
|
|
|
if "resblocks" in key: |
|
|
|
key = key.replace(".resblocks.", ".layers.") |
|
if ".ln_" in key: |
|
key = key.replace(".ln_", ".layer_norm") |
|
elif ".mlp." in key: |
|
key = key.replace(".c_fc.", ".fc1.") |
|
key = key.replace(".c_proj.", ".fc2.") |
|
elif ".attn.out_proj" in key: |
|
key = key.replace(".attn.out_proj.", ".self_attn.out_proj.") |
|
elif ".attn.in_proj" in key: |
|
key = None |
|
else: |
|
raise ValueError(f"unexpected key in SD: {key}") |
|
elif ".positional_embedding" in key: |
|
key = key.replace(".positional_embedding", ".embeddings.position_embedding.weight") |
|
elif ".text_projection" in key: |
|
key = key.replace("text_model.text_projection", "text_projection.weight") |
|
elif ".logit_scale" in key: |
|
key = None |
|
elif ".token_embedding" in key: |
|
key = key.replace(".token_embedding.weight", ".embeddings.token_embedding.weight") |
|
elif ".ln_final" in key: |
|
key = key.replace(".ln_final", ".final_layer_norm") |
|
|
|
elif ".embeddings.position_ids" in key: |
|
key = None |
|
return key |
|
|
|
keys = list(checkpoint.keys()) |
|
new_sd = {} |
|
for key in keys: |
|
new_key = convert_key(key) |
|
if new_key is None: |
|
continue |
|
new_sd[new_key] = checkpoint[key] |
|
|
|
|
|
for key in keys: |
|
if ".resblocks" in key and ".attn.in_proj_" in key: |
|
|
|
values = torch.chunk(checkpoint[key], 3) |
|
|
|
key_suffix = ".weight" if "weight" in key else ".bias" |
|
key_pfx = key.replace(SDXL_KEY_PREFIX + "transformer.resblocks.", "text_model.encoder.layers.") |
|
key_pfx = key_pfx.replace("_weight", "") |
|
key_pfx = key_pfx.replace("_bias", "") |
|
key_pfx = key_pfx.replace(".attn.in_proj", ".self_attn.") |
|
new_sd[key_pfx + "q_proj" + key_suffix] = values[0] |
|
new_sd[key_pfx + "k_proj" + key_suffix] = values[1] |
|
new_sd[key_pfx + "v_proj" + key_suffix] = values[2] |
|
|
|
|
|
position_ids = torch.Tensor([list(range(max_length))]).to(torch.int64) |
|
new_sd["text_model.embeddings.position_ids"] = position_ids |
|
|
|
|
|
logit_scale = checkpoint.get(SDXL_KEY_PREFIX + "logit_scale", None) |
|
|
|
|
|
if "text_projection.weight.weight" in new_sd: |
|
print(f"convert_sdxl_text_encoder_2_checkpoint: convert text_projection.weight.weight to text_projection.weight") |
|
new_sd["text_projection.weight"] = new_sd["text_projection.weight.weight"] |
|
del new_sd["text_projection.weight.weight"] |
|
|
|
return new_sd, logit_scale |
|
|
|
|
|
|
|
def _load_state_dict_on_device(model, state_dict, device, dtype=None): |
|
|
|
missing_keys = list(model.state_dict().keys() - state_dict.keys()) |
|
unexpected_keys = list(state_dict.keys() - model.state_dict().keys()) |
|
|
|
|
|
if not missing_keys and not unexpected_keys: |
|
for k in list(state_dict.keys()): |
|
set_module_tensor_to_device(model, k, device, value=state_dict.pop(k), dtype=dtype) |
|
return "<All keys matched successfully>" |
|
|
|
|
|
error_msgs: List[str] = [] |
|
if missing_keys: |
|
error_msgs.insert(0, "Missing key(s) in state_dict: {}. ".format(", ".join('"{}"'.format(k) for k in missing_keys))) |
|
if unexpected_keys: |
|
error_msgs.insert(0, "Unexpected key(s) in state_dict: {}. ".format(", ".join('"{}"'.format(k) for k in unexpected_keys))) |
|
|
|
raise RuntimeError("Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))) |
|
|
|
|
|
def load_models_from_sdxl_checkpoint(model_version, ckpt_path, map_location, dtype=None): |
|
|
|
|
|
|
|
|
|
if model_util.is_safetensors(ckpt_path): |
|
checkpoint = None |
|
try: |
|
state_dict = load_file(ckpt_path, device=map_location) |
|
except: |
|
state_dict = load_file(ckpt_path) |
|
epoch = None |
|
global_step = None |
|
else: |
|
checkpoint = torch.load(ckpt_path, map_location=map_location) |
|
if "state_dict" in checkpoint: |
|
state_dict = checkpoint["state_dict"] |
|
epoch = checkpoint.get("epoch", 0) |
|
global_step = checkpoint.get("global_step", 0) |
|
else: |
|
state_dict = checkpoint |
|
epoch = 0 |
|
global_step = 0 |
|
checkpoint = None |
|
|
|
|
|
print("building U-Net") |
|
with init_empty_weights(): |
|
unet = sdxl_original_unet.SdxlUNet2DConditionModel() |
|
|
|
print("loading U-Net from checkpoint") |
|
unet_sd = {} |
|
for k in list(state_dict.keys()): |
|
if k.startswith("model.diffusion_model."): |
|
unet_sd[k.replace("model.diffusion_model.", "")] = state_dict.pop(k) |
|
info = _load_state_dict_on_device(unet, unet_sd, device=map_location, dtype=dtype) |
|
print("U-Net: ", info) |
|
|
|
|
|
print("building text encoders") |
|
|
|
|
|
text_model1_cfg = CLIPTextConfig( |
|
vocab_size=49408, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
max_position_embeddings=77, |
|
hidden_act="quick_gelu", |
|
layer_norm_eps=1e-05, |
|
dropout=0.0, |
|
attention_dropout=0.0, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
model_type="clip_text_model", |
|
projection_dim=768, |
|
|
|
|
|
) |
|
with init_empty_weights(): |
|
text_model1 = CLIPTextModel._from_config(text_model1_cfg) |
|
|
|
|
|
|
|
text_model2_cfg = CLIPTextConfig( |
|
vocab_size=49408, |
|
hidden_size=1280, |
|
intermediate_size=5120, |
|
num_hidden_layers=32, |
|
num_attention_heads=20, |
|
max_position_embeddings=77, |
|
hidden_act="gelu", |
|
layer_norm_eps=1e-05, |
|
dropout=0.0, |
|
attention_dropout=0.0, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
model_type="clip_text_model", |
|
projection_dim=1280, |
|
|
|
|
|
) |
|
with init_empty_weights(): |
|
text_model2 = CLIPTextModelWithProjection(text_model2_cfg) |
|
|
|
print("loading text encoders from checkpoint") |
|
te1_sd = {} |
|
te2_sd = {} |
|
for k in list(state_dict.keys()): |
|
if k.startswith("conditioner.embedders.0.transformer."): |
|
te1_sd[k.replace("conditioner.embedders.0.transformer.", "")] = state_dict.pop(k) |
|
elif k.startswith("conditioner.embedders.1.model."): |
|
te2_sd[k] = state_dict.pop(k) |
|
|
|
|
|
if "text_model.embeddings.position_ids" not in te1_sd: |
|
te1_sd["text_model.embeddings.position_ids"] = torch.arange(77).unsqueeze(0) |
|
|
|
info1 = _load_state_dict_on_device(text_model1, te1_sd, device=map_location) |
|
print("text encoder 1:", info1) |
|
|
|
converted_sd, logit_scale = convert_sdxl_text_encoder_2_checkpoint(te2_sd, max_length=77) |
|
info2 = _load_state_dict_on_device(text_model2, converted_sd, device=map_location) |
|
print("text encoder 2:", info2) |
|
|
|
|
|
print("building VAE") |
|
vae_config = model_util.create_vae_diffusers_config() |
|
with init_empty_weights(): |
|
vae = AutoencoderKL(**vae_config) |
|
|
|
print("loading VAE from checkpoint") |
|
converted_vae_checkpoint = model_util.convert_ldm_vae_checkpoint(state_dict, vae_config) |
|
info = _load_state_dict_on_device(vae, converted_vae_checkpoint, device=map_location, dtype=dtype) |
|
print("VAE:", info) |
|
|
|
ckpt_info = (epoch, global_step) if epoch is not None else None |
|
return text_model1, text_model2, vae, unet, logit_scale, ckpt_info |
|
|
|
|
|
def make_unet_conversion_map(): |
|
unet_conversion_map_layer = [] |
|
|
|
for i in range(3): |
|
|
|
for j in range(2): |
|
|
|
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." |
|
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." |
|
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) |
|
|
|
if i < 3: |
|
|
|
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." |
|
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." |
|
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) |
|
|
|
for j in range(3): |
|
|
|
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." |
|
sd_up_res_prefix = f"output_blocks.{3*i + j}.0." |
|
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) |
|
|
|
|
|
|
|
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." |
|
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." |
|
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) |
|
|
|
if i < 3: |
|
|
|
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." |
|
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." |
|
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) |
|
|
|
|
|
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." |
|
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." |
|
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) |
|
|
|
hf_mid_atn_prefix = "mid_block.attentions.0." |
|
sd_mid_atn_prefix = "middle_block.1." |
|
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) |
|
|
|
for j in range(2): |
|
hf_mid_res_prefix = f"mid_block.resnets.{j}." |
|
sd_mid_res_prefix = f"middle_block.{2*j}." |
|
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) |
|
|
|
unet_conversion_map_resnet = [ |
|
|
|
("in_layers.0.", "norm1."), |
|
("in_layers.2.", "conv1."), |
|
("out_layers.0.", "norm2."), |
|
("out_layers.3.", "conv2."), |
|
("emb_layers.1.", "time_emb_proj."), |
|
("skip_connection.", "conv_shortcut."), |
|
] |
|
|
|
unet_conversion_map = [] |
|
for sd, hf in unet_conversion_map_layer: |
|
if "resnets" in hf: |
|
for sd_res, hf_res in unet_conversion_map_resnet: |
|
unet_conversion_map.append((sd + sd_res, hf + hf_res)) |
|
else: |
|
unet_conversion_map.append((sd, hf)) |
|
|
|
for j in range(2): |
|
hf_time_embed_prefix = f"time_embedding.linear_{j+1}." |
|
sd_time_embed_prefix = f"time_embed.{j*2}." |
|
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix)) |
|
|
|
for j in range(2): |
|
hf_label_embed_prefix = f"add_embedding.linear_{j+1}." |
|
sd_label_embed_prefix = f"label_emb.0.{j*2}." |
|
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix)) |
|
|
|
unet_conversion_map.append(("input_blocks.0.0.", "conv_in.")) |
|
unet_conversion_map.append(("out.0.", "conv_norm_out.")) |
|
unet_conversion_map.append(("out.2.", "conv_out.")) |
|
|
|
return unet_conversion_map |
|
|
|
|
|
def convert_diffusers_unet_state_dict_to_sdxl(du_sd): |
|
unet_conversion_map = make_unet_conversion_map() |
|
|
|
conversion_map = {hf: sd for sd, hf in unet_conversion_map} |
|
return convert_unet_state_dict(du_sd, conversion_map) |
|
|
|
|
|
def convert_unet_state_dict(src_sd, conversion_map): |
|
converted_sd = {} |
|
for src_key, value in src_sd.items(): |
|
|
|
src_key_fragments = src_key.split(".")[:-1] |
|
while len(src_key_fragments) > 0: |
|
src_key_prefix = ".".join(src_key_fragments) + "." |
|
if src_key_prefix in conversion_map: |
|
converted_prefix = conversion_map[src_key_prefix] |
|
converted_key = converted_prefix + src_key[len(src_key_prefix) :] |
|
converted_sd[converted_key] = value |
|
break |
|
src_key_fragments.pop(-1) |
|
assert len(src_key_fragments) > 0, f"key {src_key} not found in conversion map" |
|
|
|
return converted_sd |
|
|
|
|
|
def convert_sdxl_unet_state_dict_to_diffusers(sd): |
|
unet_conversion_map = make_unet_conversion_map() |
|
|
|
conversion_dict = {sd: hf for sd, hf in unet_conversion_map} |
|
return convert_unet_state_dict(sd, conversion_dict) |
|
|
|
|
|
def convert_text_encoder_2_state_dict_to_sdxl(checkpoint, logit_scale): |
|
def convert_key(key): |
|
|
|
if ".position_ids" in key: |
|
return None |
|
|
|
|
|
key = key.replace("text_model.encoder.", "transformer.") |
|
key = key.replace("text_model.", "") |
|
if "layers" in key: |
|
|
|
key = key.replace(".layers.", ".resblocks.") |
|
if ".layer_norm" in key: |
|
key = key.replace(".layer_norm", ".ln_") |
|
elif ".mlp." in key: |
|
key = key.replace(".fc1.", ".c_fc.") |
|
key = key.replace(".fc2.", ".c_proj.") |
|
elif ".self_attn.out_proj" in key: |
|
key = key.replace(".self_attn.out_proj.", ".attn.out_proj.") |
|
elif ".self_attn." in key: |
|
key = None |
|
else: |
|
raise ValueError(f"unexpected key in DiffUsers model: {key}") |
|
elif ".position_embedding" in key: |
|
key = key.replace("embeddings.position_embedding.weight", "positional_embedding") |
|
elif ".token_embedding" in key: |
|
key = key.replace("embeddings.token_embedding.weight", "token_embedding.weight") |
|
elif "text_projection" in key: |
|
key = key.replace("text_projection.weight", "text_projection") |
|
elif "final_layer_norm" in key: |
|
key = key.replace("final_layer_norm", "ln_final") |
|
return key |
|
|
|
keys = list(checkpoint.keys()) |
|
new_sd = {} |
|
for key in keys: |
|
new_key = convert_key(key) |
|
if new_key is None: |
|
continue |
|
new_sd[new_key] = checkpoint[key] |
|
|
|
|
|
for key in keys: |
|
if "layers" in key and "q_proj" in key: |
|
|
|
key_q = key |
|
key_k = key.replace("q_proj", "k_proj") |
|
key_v = key.replace("q_proj", "v_proj") |
|
|
|
value_q = checkpoint[key_q] |
|
value_k = checkpoint[key_k] |
|
value_v = checkpoint[key_v] |
|
value = torch.cat([value_q, value_k, value_v]) |
|
|
|
new_key = key.replace("text_model.encoder.layers.", "transformer.resblocks.") |
|
new_key = new_key.replace(".self_attn.q_proj.", ".attn.in_proj_") |
|
new_sd[new_key] = value |
|
|
|
if logit_scale is not None: |
|
new_sd["logit_scale"] = logit_scale |
|
|
|
return new_sd |
|
|
|
|
|
def save_stable_diffusion_checkpoint( |
|
output_file, |
|
text_encoder1, |
|
text_encoder2, |
|
unet, |
|
epochs, |
|
steps, |
|
ckpt_info, |
|
vae, |
|
logit_scale, |
|
metadata, |
|
save_dtype=None, |
|
): |
|
state_dict = {} |
|
|
|
def update_sd(prefix, sd): |
|
for k, v in sd.items(): |
|
key = prefix + k |
|
if save_dtype is not None: |
|
v = v.detach().clone().to("cpu").to(save_dtype) |
|
state_dict[key] = v |
|
|
|
|
|
update_sd("model.diffusion_model.", unet.state_dict()) |
|
|
|
|
|
update_sd("conditioner.embedders.0.transformer.", text_encoder1.state_dict()) |
|
|
|
text_enc2_dict = convert_text_encoder_2_state_dict_to_sdxl(text_encoder2.state_dict(), logit_scale) |
|
update_sd("conditioner.embedders.1.model.", text_enc2_dict) |
|
|
|
|
|
vae_dict = model_util.convert_vae_state_dict(vae.state_dict()) |
|
update_sd("first_stage_model.", vae_dict) |
|
|
|
|
|
key_count = len(state_dict.keys()) |
|
new_ckpt = {"state_dict": state_dict} |
|
|
|
|
|
if ckpt_info is not None: |
|
epochs += ckpt_info[0] |
|
steps += ckpt_info[1] |
|
|
|
new_ckpt["epoch"] = epochs |
|
new_ckpt["global_step"] = steps |
|
|
|
if model_util.is_safetensors(output_file): |
|
save_file(state_dict, output_file, metadata) |
|
else: |
|
torch.save(new_ckpt, output_file) |
|
|
|
return key_count |
|
|
|
|
|
def save_diffusers_checkpoint( |
|
output_dir, text_encoder1, text_encoder2, unet, pretrained_model_name_or_path, vae=None, use_safetensors=False, save_dtype=None |
|
): |
|
from diffusers import StableDiffusionXLPipeline |
|
|
|
|
|
unet_sd = unet.state_dict() |
|
du_unet_sd = convert_sdxl_unet_state_dict_to_diffusers(unet_sd) |
|
|
|
diffusers_unet = UNet2DConditionModel(**DIFFUSERS_SDXL_UNET_CONFIG) |
|
if save_dtype is not None: |
|
diffusers_unet.to(save_dtype) |
|
diffusers_unet.load_state_dict(du_unet_sd) |
|
|
|
|
|
if pretrained_model_name_or_path is None: |
|
pretrained_model_name_or_path = DIFFUSERS_REF_MODEL_ID_SDXL |
|
|
|
scheduler = EulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler") |
|
tokenizer1 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer") |
|
tokenizer2 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2") |
|
if vae is None: |
|
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae") |
|
|
|
|
|
def remove_name_or_path(model): |
|
if hasattr(model, "config"): |
|
model.config._name_or_path = None |
|
model.config._name_or_path = None |
|
|
|
remove_name_or_path(diffusers_unet) |
|
remove_name_or_path(text_encoder1) |
|
remove_name_or_path(text_encoder2) |
|
remove_name_or_path(scheduler) |
|
remove_name_or_path(tokenizer1) |
|
remove_name_or_path(tokenizer2) |
|
remove_name_or_path(vae) |
|
|
|
pipeline = StableDiffusionXLPipeline( |
|
unet=diffusers_unet, |
|
text_encoder=text_encoder1, |
|
text_encoder_2=text_encoder2, |
|
vae=vae, |
|
scheduler=scheduler, |
|
tokenizer=tokenizer1, |
|
tokenizer_2=tokenizer2, |
|
) |
|
if save_dtype is not None: |
|
pipeline.to(None, save_dtype) |
|
pipeline.save_pretrained(output_dir, safe_serialization=use_safetensors) |
|
|