jayparmr's picture
Upload 118 files
19b3da3
raw
history blame
3.47 kB
import bisect
import warnings
from torch._utils import _accumulate
from torch import randperm
class Dataset(object):
"""An abstract class representing a Dataset.
All other datasets should subclass it. All subclasses should override
``__len__``, that provides the size of the dataset, and ``__getitem__``,
supporting integer indexing in range from 0 to len(self) exclusive.
"""
def __getitem__(self, index):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
def __add__(self, other):
return ConcatDataset([self, other])
class TensorDataset(Dataset):
"""Dataset wrapping data and target tensors.
Each sample will be retrieved by indexing both tensors along the first
dimension.
Arguments:
data_tensor (Tensor): contains sample data.
target_tensor (Tensor): contains sample targets (labels).
"""
def __init__(self, data_tensor, target_tensor):
assert data_tensor.size(0) == target_tensor.size(0)
self.data_tensor = data_tensor
self.target_tensor = target_tensor
def __getitem__(self, index):
return self.data_tensor[index], self.target_tensor[index]
def __len__(self):
return self.data_tensor.size(0)
class ConcatDataset(Dataset):
"""
Dataset to concatenate multiple datasets.
Purpose: useful to assemble different existing datasets, possibly
large-scale datasets as the concatenation operation is done in an
on-the-fly manner.
Arguments:
datasets (iterable): List of datasets to be concatenated
"""
@staticmethod
def cumsum(sequence):
r, s = [], 0
for e in sequence:
l = len(e)
r.append(l + s)
s += l
return r
def __init__(self, datasets):
super(ConcatDataset, self).__init__()
assert len(datasets) > 0, 'datasets should not be an empty iterable'
self.datasets = list(datasets)
self.cumulative_sizes = self.cumsum(self.datasets)
def __len__(self):
return self.cumulative_sizes[-1]
def __getitem__(self, idx):
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
return self.datasets[dataset_idx][sample_idx]
@property
def cummulative_sizes(self):
warnings.warn("cummulative_sizes attribute is renamed to "
"cumulative_sizes", DeprecationWarning, stacklevel=2)
return self.cumulative_sizes
class Subset(Dataset):
def __init__(self, dataset, indices):
self.dataset = dataset
self.indices = indices
def __getitem__(self, idx):
return self.dataset[self.indices[idx]]
def __len__(self):
return len(self.indices)
def random_split(dataset, lengths):
"""
Randomly split a dataset into non-overlapping new datasets of given lengths
ds
Arguments:
dataset (Dataset): Dataset to be split
lengths (iterable): lengths of splits to be produced
"""
if sum(lengths) != len(dataset):
raise ValueError("Sum of input lengths does not equal the length of the input dataset!")
indices = randperm(sum(lengths))
return [Subset(dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(lengths), lengths)]