|
import logging |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision import models |
|
|
|
try: |
|
from torchvision.models.utils import load_state_dict_from_url |
|
except ImportError: |
|
from torch.utils.model_zoo import load_url as load_state_dict_from_url |
|
|
|
|
|
|
|
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' |
|
|
|
|
|
LOGGER = logging.getLogger(__name__) |
|
|
|
|
|
class InceptionV3(nn.Module): |
|
"""Pretrained InceptionV3 network returning feature maps""" |
|
|
|
|
|
|
|
DEFAULT_BLOCK_INDEX = 3 |
|
|
|
|
|
BLOCK_INDEX_BY_DIM = { |
|
64: 0, |
|
192: 1, |
|
768: 2, |
|
2048: 3 |
|
} |
|
|
|
def __init__(self, |
|
output_blocks=[DEFAULT_BLOCK_INDEX], |
|
resize_input=True, |
|
normalize_input=True, |
|
requires_grad=False, |
|
use_fid_inception=True): |
|
"""Build pretrained InceptionV3 |
|
|
|
Parameters |
|
---------- |
|
output_blocks : list of int |
|
Indices of blocks to return features of. Possible values are: |
|
- 0: corresponds to output of first max pooling |
|
- 1: corresponds to output of second max pooling |
|
- 2: corresponds to output which is fed to aux classifier |
|
- 3: corresponds to output of final average pooling |
|
resize_input : bool |
|
If true, bilinearly resizes input to width and height 299 before |
|
feeding input to model. As the network without fully connected |
|
layers is fully convolutional, it should be able to handle inputs |
|
of arbitrary size, so resizing might not be strictly needed |
|
normalize_input : bool |
|
If true, scales the input from range (0, 1) to the range the |
|
pretrained Inception network expects, namely (-1, 1) |
|
requires_grad : bool |
|
If true, parameters of the model require gradients. Possibly useful |
|
for finetuning the network |
|
use_fid_inception : bool |
|
If true, uses the pretrained Inception model used in Tensorflow's |
|
FID implementation. If false, uses the pretrained Inception model |
|
available in torchvision. The FID Inception model has different |
|
weights and a slightly different structure from torchvision's |
|
Inception model. If you want to compute FID scores, you are |
|
strongly advised to set this parameter to true to get comparable |
|
results. |
|
""" |
|
super(InceptionV3, self).__init__() |
|
|
|
self.resize_input = resize_input |
|
self.normalize_input = normalize_input |
|
self.output_blocks = sorted(output_blocks) |
|
self.last_needed_block = max(output_blocks) |
|
|
|
assert self.last_needed_block <= 3, \ |
|
'Last possible output block index is 3' |
|
|
|
self.blocks = nn.ModuleList() |
|
|
|
if use_fid_inception: |
|
inception = fid_inception_v3() |
|
else: |
|
inception = models.inception_v3(pretrained=True) |
|
|
|
|
|
block0 = [ |
|
inception.Conv2d_1a_3x3, |
|
inception.Conv2d_2a_3x3, |
|
inception.Conv2d_2b_3x3, |
|
nn.MaxPool2d(kernel_size=3, stride=2) |
|
] |
|
self.blocks.append(nn.Sequential(*block0)) |
|
|
|
|
|
if self.last_needed_block >= 1: |
|
block1 = [ |
|
inception.Conv2d_3b_1x1, |
|
inception.Conv2d_4a_3x3, |
|
nn.MaxPool2d(kernel_size=3, stride=2) |
|
] |
|
self.blocks.append(nn.Sequential(*block1)) |
|
|
|
|
|
if self.last_needed_block >= 2: |
|
block2 = [ |
|
inception.Mixed_5b, |
|
inception.Mixed_5c, |
|
inception.Mixed_5d, |
|
inception.Mixed_6a, |
|
inception.Mixed_6b, |
|
inception.Mixed_6c, |
|
inception.Mixed_6d, |
|
inception.Mixed_6e, |
|
] |
|
self.blocks.append(nn.Sequential(*block2)) |
|
|
|
|
|
if self.last_needed_block >= 3: |
|
block3 = [ |
|
inception.Mixed_7a, |
|
inception.Mixed_7b, |
|
inception.Mixed_7c, |
|
nn.AdaptiveAvgPool2d(output_size=(1, 1)) |
|
] |
|
self.blocks.append(nn.Sequential(*block3)) |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = requires_grad |
|
|
|
def forward(self, inp): |
|
"""Get Inception feature maps |
|
|
|
Parameters |
|
---------- |
|
inp : torch.autograd.Variable |
|
Input tensor of shape Bx3xHxW. Values are expected to be in |
|
range (0, 1) |
|
|
|
Returns |
|
------- |
|
List of torch.autograd.Variable, corresponding to the selected output |
|
block, sorted ascending by index |
|
""" |
|
outp = [] |
|
x = inp |
|
|
|
if self.resize_input: |
|
x = F.interpolate(x, |
|
size=(299, 299), |
|
mode='bilinear', |
|
align_corners=False) |
|
|
|
if self.normalize_input: |
|
x = 2 * x - 1 |
|
|
|
for idx, block in enumerate(self.blocks): |
|
x = block(x) |
|
if idx in self.output_blocks: |
|
outp.append(x) |
|
|
|
if idx == self.last_needed_block: |
|
break |
|
|
|
return outp |
|
|
|
|
|
def fid_inception_v3(): |
|
"""Build pretrained Inception model for FID computation |
|
|
|
The Inception model for FID computation uses a different set of weights |
|
and has a slightly different structure than torchvision's Inception. |
|
|
|
This method first constructs torchvision's Inception and then patches the |
|
necessary parts that are different in the FID Inception model. |
|
""" |
|
LOGGER.info('fid_inception_v3 called') |
|
inception = models.inception_v3(num_classes=1008, |
|
aux_logits=False, |
|
pretrained=False) |
|
LOGGER.info('models.inception_v3 done') |
|
inception.Mixed_5b = FIDInceptionA(192, pool_features=32) |
|
inception.Mixed_5c = FIDInceptionA(256, pool_features=64) |
|
inception.Mixed_5d = FIDInceptionA(288, pool_features=64) |
|
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) |
|
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) |
|
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) |
|
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) |
|
inception.Mixed_7b = FIDInceptionE_1(1280) |
|
inception.Mixed_7c = FIDInceptionE_2(2048) |
|
|
|
LOGGER.info('fid_inception_v3 patching done') |
|
|
|
state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) |
|
LOGGER.info('fid_inception_v3 weights downloaded') |
|
|
|
inception.load_state_dict(state_dict) |
|
LOGGER.info('fid_inception_v3 weights loaded into model') |
|
|
|
return inception |
|
|
|
|
|
class FIDInceptionA(models.inception.InceptionA): |
|
"""InceptionA block patched for FID computation""" |
|
def __init__(self, in_channels, pool_features): |
|
super(FIDInceptionA, self).__init__(in_channels, pool_features) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch5x5 = self.branch5x5_1(x) |
|
branch5x5 = self.branch5x5_2(branch5x5) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, |
|
count_include_pad=False) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionC(models.inception.InceptionC): |
|
"""InceptionC block patched for FID computation""" |
|
def __init__(self, in_channels, channels_7x7): |
|
super(FIDInceptionC, self).__init__(in_channels, channels_7x7) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch7x7 = self.branch7x7_1(x) |
|
branch7x7 = self.branch7x7_2(branch7x7) |
|
branch7x7 = self.branch7x7_3(branch7x7) |
|
|
|
branch7x7dbl = self.branch7x7dbl_1(x) |
|
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, |
|
count_include_pad=False) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionE_1(models.inception.InceptionE): |
|
"""First InceptionE block patched for FID computation""" |
|
def __init__(self, in_channels): |
|
super(FIDInceptionE_1, self).__init__(in_channels) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = [ |
|
self.branch3x3_2a(branch3x3), |
|
self.branch3x3_2b(branch3x3), |
|
] |
|
branch3x3 = torch.cat(branch3x3, 1) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = [ |
|
self.branch3x3dbl_3a(branch3x3dbl), |
|
self.branch3x3dbl_3b(branch3x3dbl), |
|
] |
|
branch3x3dbl = torch.cat(branch3x3dbl, 1) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, |
|
count_include_pad=False) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionE_2(models.inception.InceptionE): |
|
"""Second InceptionE block patched for FID computation""" |
|
def __init__(self, in_channels): |
|
super(FIDInceptionE_2, self).__init__(in_channels) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = [ |
|
self.branch3x3_2a(branch3x3), |
|
self.branch3x3_2b(branch3x3), |
|
] |
|
branch3x3 = torch.cat(branch3x3, 1) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = [ |
|
self.branch3x3dbl_3a(branch3x3dbl), |
|
self.branch3x3dbl_3b(branch3x3dbl), |
|
] |
|
branch3x3dbl = torch.cat(branch3x3dbl, 1) |
|
|
|
|
|
|
|
|
|
|
|
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|