jayparmr's picture
Upload folder using huggingface_hub
1bc457e
raw
history blame
21.1 kB
# this file is adapted from https://github.com/victorca25/iNNfer
import math
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
####################
# RRDBNet Generator
####################
class RRDBNet(nn.Module):
def __init__(
self,
in_nc,
out_nc,
nf,
nb,
nr=3,
gc=32,
upscale=4,
norm_type=None,
act_type="leakyrelu",
mode="CNA",
upsample_mode="upconv",
convtype="Conv2D",
finalact=None,
gaussian_noise=False,
plus=False,
):
super(RRDBNet, self).__init__()
n_upscale = int(math.log(upscale, 2))
if upscale == 3:
n_upscale = 1
self.resrgan_scale = 0
if in_nc % 16 == 0:
self.resrgan_scale = 1
elif in_nc != 4 and in_nc % 4 == 0:
self.resrgan_scale = 2
fea_conv = conv_block(
in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype
)
rb_blocks = [
RRDB(
nf,
nr,
kernel_size=3,
gc=32,
stride=1,
bias=1,
pad_type="zero",
norm_type=norm_type,
act_type=act_type,
mode="CNA",
convtype=convtype,
gaussian_noise=gaussian_noise,
plus=plus,
)
for _ in range(nb)
]
LR_conv = conv_block(
nf,
nf,
kernel_size=3,
norm_type=norm_type,
act_type=None,
mode=mode,
convtype=convtype,
)
if upsample_mode == "upconv":
upsample_block = upconv_block
elif upsample_mode == "pixelshuffle":
upsample_block = pixelshuffle_block
else:
raise NotImplementedError(f"upsample mode [{upsample_mode}] is not found")
if upscale == 3:
upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype)
else:
upsampler = [
upsample_block(nf, nf, act_type=act_type, convtype=convtype)
for _ in range(n_upscale)
]
HR_conv0 = conv_block(
nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype
)
HR_conv1 = conv_block(
nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype
)
outact = act(finalact) if finalact else None
self.model = sequential(
fea_conv,
ShortcutBlock(sequential(*rb_blocks, LR_conv)),
*upsampler,
HR_conv0,
HR_conv1,
outact,
)
def forward(self, x, outm=None):
if self.resrgan_scale == 1:
feat = pixel_unshuffle(x, scale=4)
elif self.resrgan_scale == 2:
feat = pixel_unshuffle(x, scale=2)
else:
feat = x
return self.model(feat)
class RRDB(nn.Module):
"""
Residual in Residual Dense Block
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
"""
def __init__(
self,
nf,
nr=3,
kernel_size=3,
gc=32,
stride=1,
bias=1,
pad_type="zero",
norm_type=None,
act_type="leakyrelu",
mode="CNA",
convtype="Conv2D",
spectral_norm=False,
gaussian_noise=False,
plus=False,
):
super(RRDB, self).__init__()
# This is for backwards compatibility with existing models
if nr == 3:
self.RDB1 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
convtype,
spectral_norm=spectral_norm,
gaussian_noise=gaussian_noise,
plus=plus,
)
self.RDB2 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
convtype,
spectral_norm=spectral_norm,
gaussian_noise=gaussian_noise,
plus=plus,
)
self.RDB3 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
convtype,
spectral_norm=spectral_norm,
gaussian_noise=gaussian_noise,
plus=plus,
)
else:
RDB_list = [
ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
convtype,
spectral_norm=spectral_norm,
gaussian_noise=gaussian_noise,
plus=plus,
)
for _ in range(nr)
]
self.RDBs = nn.Sequential(*RDB_list)
def forward(self, x):
if hasattr(self, "RDB1"):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
else:
out = self.RDBs(x)
return out * 0.2 + x
class ResidualDenseBlock_5C(nn.Module):
"""
Residual Dense Block
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
"""
def __init__(
self,
nf=64,
kernel_size=3,
gc=32,
stride=1,
bias=1,
pad_type="zero",
norm_type=None,
act_type="leakyrelu",
mode="CNA",
convtype="Conv2D",
spectral_norm=False,
gaussian_noise=False,
plus=False,
):
super(ResidualDenseBlock_5C, self).__init__()
self.noise = GaussianNoise() if gaussian_noise else None
self.conv1x1 = conv1x1(nf, gc) if plus else None
self.conv1 = conv_block(
nf,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
convtype=convtype,
spectral_norm=spectral_norm,
)
self.conv2 = conv_block(
nf + gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
convtype=convtype,
spectral_norm=spectral_norm,
)
self.conv3 = conv_block(
nf + 2 * gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
convtype=convtype,
spectral_norm=spectral_norm,
)
self.conv4 = conv_block(
nf + 3 * gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
convtype=convtype,
spectral_norm=spectral_norm,
)
if mode == "CNA":
last_act = None
else:
last_act = act_type
self.conv5 = conv_block(
nf + 4 * gc,
nf,
3,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=last_act,
mode=mode,
convtype=convtype,
spectral_norm=spectral_norm,
)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(torch.cat((x, x1), 1))
if self.conv1x1:
x2 = x2 + self.conv1x1(x)
x3 = self.conv3(torch.cat((x, x1, x2), 1))
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
if self.conv1x1:
x4 = x4 + x2
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
if self.noise:
return self.noise(x5.mul(0.2) + x)
else:
return x5 * 0.2 + x
####################
# ESRGANplus
####################
class GaussianNoise(nn.Module):
def __init__(self, sigma=0.1, is_relative_detach=False):
super().__init__()
self.sigma = sigma
self.is_relative_detach = is_relative_detach
self.noise = torch.tensor(0, dtype=torch.float)
def forward(self, x):
if self.training and self.sigma != 0:
self.noise = self.noise.to(x.device)
scale = (
self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
)
sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
x = x + sampled_noise
return x
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
####################
# SRVGGNetCompact
####################
class SRVGGNetCompact(nn.Module):
"""A compact VGG-style network structure for super-resolution.
This class is copied from https://github.com/xinntao/Real-ESRGAN
"""
def __init__(
self,
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=16,
upscale=4,
act_type="prelu",
):
super(SRVGGNetCompact, self).__init__()
self.num_in_ch = num_in_ch
self.num_out_ch = num_out_ch
self.num_feat = num_feat
self.num_conv = num_conv
self.upscale = upscale
self.act_type = act_type
self.body = nn.ModuleList()
# the first conv
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
# the first activation
if act_type == "relu":
activation = nn.ReLU(inplace=True)
elif act_type == "prelu":
activation = nn.PReLU(num_parameters=num_feat)
elif act_type == "leakyrelu":
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.body.append(activation)
# the body structure
for _ in range(num_conv):
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
# activation
if act_type == "relu":
activation = nn.ReLU(inplace=True)
elif act_type == "prelu":
activation = nn.PReLU(num_parameters=num_feat)
elif act_type == "leakyrelu":
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.body.append(activation)
# the last conv
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
# upsample
self.upsampler = nn.PixelShuffle(upscale)
def forward(self, x):
out = x
for i in range(0, len(self.body)):
out = self.body[i](out)
out = self.upsampler(out)
# add the nearest upsampled image, so that the network learns the residual
base = F.interpolate(x, scale_factor=self.upscale, mode="nearest")
out += base
return out
####################
# Upsampler
####################
class Upsample(nn.Module):
r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
The input data is assumed to be of the form
`minibatch x channels x [optional depth] x [optional height] x width`.
"""
def __init__(
self, size=None, scale_factor=None, mode="nearest", align_corners=None
):
super(Upsample, self).__init__()
if isinstance(scale_factor, tuple):
self.scale_factor = tuple(float(factor) for factor in scale_factor)
else:
self.scale_factor = float(scale_factor) if scale_factor else None
self.mode = mode
self.size = size
self.align_corners = align_corners
def forward(self, x):
return nn.functional.interpolate(
x,
size=self.size,
scale_factor=self.scale_factor,
mode=self.mode,
align_corners=self.align_corners,
)
def extra_repr(self):
if self.scale_factor is not None:
info = f"scale_factor={self.scale_factor}"
else:
info = f"size={self.size}"
info += f", mode={self.mode}"
return info
def pixel_unshuffle(x, scale):
"""Pixel unshuffle.
Args:
x (Tensor): Input feature with shape (b, c, hh, hw).
scale (int): Downsample ratio.
Returns:
Tensor: the pixel unshuffled feature.
"""
b, c, hh, hw = x.size()
out_channel = c * (scale**2)
assert hh % scale == 0 and hw % scale == 0
h = hh // scale
w = hw // scale
x_view = x.view(b, c, h, scale, w, scale)
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
def pixelshuffle_block(
in_nc,
out_nc,
upscale_factor=2,
kernel_size=3,
stride=1,
bias=True,
pad_type="zero",
norm_type=None,
act_type="relu",
convtype="Conv2D",
):
"""
Pixel shuffle layer
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
Neural Network, CVPR17)
"""
conv = conv_block(
in_nc,
out_nc * (upscale_factor**2),
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=None,
act_type=None,
convtype=convtype,
)
pixel_shuffle = nn.PixelShuffle(upscale_factor)
n = norm(norm_type, out_nc) if norm_type else None
a = act(act_type) if act_type else None
return sequential(conv, pixel_shuffle, n, a)
def upconv_block(
in_nc,
out_nc,
upscale_factor=2,
kernel_size=3,
stride=1,
bias=True,
pad_type="zero",
norm_type=None,
act_type="relu",
mode="nearest",
convtype="Conv2D",
):
"""Upconv layer"""
upscale_factor = (
(1, upscale_factor, upscale_factor) if convtype == "Conv3D" else upscale_factor
)
upsample = Upsample(scale_factor=upscale_factor, mode=mode)
conv = conv_block(
in_nc,
out_nc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
convtype=convtype,
)
return sequential(upsample, conv)
####################
# Basic blocks
####################
def make_layer(basic_block, num_basic_block, **kwarg):
"""Make layers by stacking the same blocks.
Args:
basic_block (nn.module): nn.module class for basic block. (block)
num_basic_block (int): number of blocks. (n_layers)
Returns:
nn.Sequential: Stacked blocks in nn.Sequential.
"""
layers = []
for _ in range(num_basic_block):
layers.append(basic_block(**kwarg))
return nn.Sequential(*layers)
def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0):
"""activation helper"""
act_type = act_type.lower()
if act_type == "relu":
layer = nn.ReLU(inplace)
elif act_type in ("leakyrelu", "lrelu"):
layer = nn.LeakyReLU(neg_slope, inplace)
elif act_type == "prelu":
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
elif act_type == "tanh": # [-1, 1] range output
layer = nn.Tanh()
elif act_type == "sigmoid": # [0, 1] range output
layer = nn.Sigmoid()
else:
raise NotImplementedError(f"activation layer [{act_type}] is not found")
return layer
class Identity(nn.Module):
def __init__(self, *kwargs):
super(Identity, self).__init__()
def forward(self, x, *kwargs):
return x
def norm(norm_type, nc):
"""Return a normalization layer"""
norm_type = norm_type.lower()
if norm_type == "batch":
layer = nn.BatchNorm2d(nc, affine=True)
elif norm_type == "instance":
layer = nn.InstanceNorm2d(nc, affine=False)
elif norm_type == "none":
def norm_layer(x):
return Identity()
else:
raise NotImplementedError(f"normalization layer [{norm_type}] is not found")
return layer
def pad(pad_type, padding):
"""padding layer helper"""
pad_type = pad_type.lower()
if padding == 0:
return None
if pad_type == "reflect":
layer = nn.ReflectionPad2d(padding)
elif pad_type == "replicate":
layer = nn.ReplicationPad2d(padding)
elif pad_type == "zero":
layer = nn.ZeroPad2d(padding)
else:
raise NotImplementedError(f"padding layer [{pad_type}] is not implemented")
return layer
def get_valid_padding(kernel_size, dilation):
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
padding = (kernel_size - 1) // 2
return padding
class ShortcutBlock(nn.Module):
"""Elementwise sum the output of a submodule to its input"""
def __init__(self, submodule):
super(ShortcutBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = x + self.sub(x)
return output
def __repr__(self):
return "Identity + \n|" + self.sub.__repr__().replace("\n", "\n|")
def sequential(*args):
"""Flatten Sequential. It unwraps nn.Sequential."""
if len(args) == 1:
if isinstance(args[0], OrderedDict):
raise NotImplementedError("sequential does not support OrderedDict input.")
return args[0] # No sequential is needed.
modules = []
for module in args:
if isinstance(module, nn.Sequential):
for submodule in module.children():
modules.append(submodule)
elif isinstance(module, nn.Module):
modules.append(module)
return nn.Sequential(*modules)
def conv_block(
in_nc,
out_nc,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True,
pad_type="zero",
norm_type=None,
act_type="relu",
mode="CNA",
convtype="Conv2D",
spectral_norm=False,
):
"""Conv layer with padding, normalization, activation"""
assert mode in ["CNA", "NAC", "CNAC"], f"Wrong conv mode [{mode}]"
padding = get_valid_padding(kernel_size, dilation)
p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None
padding = padding if pad_type == "zero" else 0
if convtype == "PartialConv2D":
from torchvision.ops import (
PartialConv2d,
) # this is definitely not going to work, but PartialConv2d doesn't work anyway and this shuts up static analyzer
c = PartialConv2d(
in_nc,
out_nc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
groups=groups,
)
elif convtype == "DeformConv2D":
from torchvision.ops import DeformConv2d # not tested
c = DeformConv2d(
in_nc,
out_nc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
groups=groups,
)
elif convtype == "Conv3D":
c = nn.Conv3d(
in_nc,
out_nc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
groups=groups,
)
else:
c = nn.Conv2d(
in_nc,
out_nc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
groups=groups,
)
if spectral_norm:
c = nn.utils.spectral_norm(c)
a = act(act_type) if act_type else None
if "CNA" in mode:
n = norm(norm_type, out_nc) if norm_type else None
return sequential(p, c, n, a)
elif mode == "NAC":
if norm_type is None and act_type is not None:
a = act(act_type, inplace=False)
n = norm(norm_type, in_nc) if norm_type else None
return sequential(n, a, p, c)