|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
|
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
from diffusers import StableDiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
|
|
|
|
class two_step_pipeline(StableDiffusionPipeline): |
|
@torch.no_grad() |
|
def two_step_pipeline( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
modified_prompts: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
iteration: float = 3.0, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
|
Examples: |
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
modified_embeds = self._encode_prompt( |
|
modified_prompts, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
print("mod prompt size : ", modified_embeds.size(), modified_embeds.dtype) |
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
|
|
print("prompt size : ", prompt_embeds.size(), prompt_embeds.dtype) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
) |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs |
|
).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if i == int(len(timesteps) / iteration): |
|
print("modified prompts") |
|
prompt_embeds = modified_embeds |
|
|
|
if output_type == "latent": |
|
image = latents |
|
has_nsfw_concept = None |
|
elif output_type == "pil": |
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker( |
|
image, device, prompt_embeds.dtype |
|
) |
|
|
|
|
|
image = self.numpy_to_pil(image) |
|
else: |
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker( |
|
image, device, prompt_embeds.dtype |
|
) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput( |
|
images=image, nsfw_content_detected=has_nsfw_concept |
|
) |
|
|
|
@torch.no_grad() |
|
def multi_character_diffusion( |
|
self, |
|
prompt: Union[str, List[str]], |
|
pos: List[str], |
|
mix_val: Union[float, List[float]] = 0.5, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
height = height - height % 8 |
|
width = width - width % 8 |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs(prompt[0], height, width, callback_steps) |
|
|
|
|
|
batch_size = 1 if isinstance(prompt[0], str) else len(prompt[0]) |
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_embeddings = [] |
|
for i in range(len(prompt)): |
|
one_text_embeddings = self._encode_prompt( |
|
prompt[i], |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt[i], |
|
) |
|
text_embeddings.append(one_text_embeddings) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
text_embeddings[0].dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
) |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_preds = [] |
|
for i in range(len(prompt)): |
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=text_embeddings[i] |
|
).sample |
|
noise_preds.append(noise_pred) |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_unconds = [] |
|
noise_pred_texts = [] |
|
for i in range(len(prompt)): |
|
noise_pred_uncond, noise_pred_text = noise_preds[i].chunk(2) |
|
noise_pred_unconds.append(noise_pred_uncond) |
|
noise_pred_texts.append(noise_pred_text) |
|
|
|
mask_list = [] |
|
for i in range(len(prompt)): |
|
pos_base = pos[i].split("-") |
|
pos_dev = pos_base[0].split(":") |
|
pos_pos = pos_base[1].split(":") |
|
one_filter = None |
|
zero_f = False |
|
for y in range(int(pos_dev[0])): |
|
one_line = None |
|
zero = False |
|
for x in range(int(pos_dev[1])): |
|
if y == int(pos_pos[0]) and x == int(pos_pos[1]): |
|
|
|
if zero: |
|
one_block = ( |
|
torch.ones( |
|
batch_size, |
|
4, |
|
(height // 8) // int(pos_dev[0]), |
|
(width // 8) // int(pos_dev[1]), |
|
) |
|
.to(device) |
|
.to(torch.float16) |
|
* mix_val[i] |
|
) |
|
one_line = torch.cat((one_line, one_block), 3) |
|
else: |
|
zero = True |
|
one_block = ( |
|
torch.ones( |
|
batch_size, |
|
4, |
|
(height // 8) // int(pos_dev[0]), |
|
(width // 8) // int(pos_dev[1]), |
|
) |
|
.to(device) |
|
.to(torch.float16) |
|
* mix_val[i] |
|
) |
|
one_line = one_block |
|
else: |
|
|
|
if zero: |
|
one_block = ( |
|
torch.zeros( |
|
batch_size, |
|
4, |
|
(height // 8) // int(pos_dev[0]), |
|
(width // 8) // int(pos_dev[1]), |
|
) |
|
.to(device) |
|
.to(torch.float16) |
|
) |
|
one_line = torch.cat((one_line, one_block), 3) |
|
else: |
|
zero = True |
|
one_block = ( |
|
torch.zeros( |
|
batch_size, |
|
4, |
|
(height // 8) // int(pos_dev[0]), |
|
(width // 8) // int(pos_dev[1]), |
|
) |
|
.to(device) |
|
.to(torch.float16) |
|
) |
|
one_line = one_block |
|
one_block = ( |
|
torch.zeros( |
|
batch_size, |
|
4, |
|
(height // 8) // int(pos_dev[0]), |
|
(width // 8) - one_line.size()[3], |
|
) |
|
.to(device) |
|
.to(torch.float16) |
|
) |
|
one_line = torch.cat((one_line, one_block), 3) |
|
if zero_f: |
|
one_filter = torch.cat((one_filter, one_line), 2) |
|
else: |
|
zero_f = True |
|
one_filter = one_line |
|
mask_list.append(one_filter) |
|
for i in range(len(mask_list)): |
|
import torchvision |
|
|
|
torchvision.transforms.functional.to_pil_image( |
|
mask_list[i][0] * 256 |
|
).save(str(i) + ".png") |
|
|
|
result = None |
|
noise_preds = [] |
|
for i in range(len(prompt)): |
|
noise_pred = noise_pred_unconds[i] + guidance_scale * ( |
|
noise_pred_texts[i] - noise_pred_unconds[i] |
|
) |
|
noise_preds.append(noise_pred) |
|
result = noise_preds[0] * mask_list[0] |
|
for i in range(1, len(prompt)): |
|
result += noise_preds[i] * mask_list[i] |
|
|
|
|
|
|
|
|
|
latents = self.scheduler.step( |
|
result, t, latents, **extra_step_kwargs |
|
).prev_sample |
|
|
|
|
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker( |
|
image, device, text_embeddings[0].dtype |
|
) |
|
|
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
output = [] |
|
import torchvision |
|
|
|
for i in mask_list: |
|
output.append( |
|
torchvision.transforms.functional.to_pil_image(i[0] * 256) |
|
) |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput( |
|
images=image, nsfw_content_detected=has_nsfw_concept |
|
) |
|
|