File size: 7,387 Bytes
fd5252e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10230ea
9387217
22df957
 
 
fd5252e
 
 
 
 
 
 
 
22df957
10230ea
9387217
22df957
 
fd5252e
 
 
10230ea
9387217
22df957
 
 
fd5252e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import json
import os
import shutil
from dataclasses import dataclass
from pathlib import Path
from threading import Thread
from typing import Any, Dict, List, Optional

import requests
from tqdm import tqdm


@dataclass
class ModelConfig:
    base_model_path: str
    base_inpaint_model_path: str
    is_sdxl: bool = False
    base_dimension: int = 512
    low_gpu_mem: bool = False
    base_model_variant: Optional[str] = None
    base_inpaint_model_variant: Optional[str] = None


def load_model_from_config(path):
    m_config = ModelConfig(path, path)
    if os.path.exists(path + "/inference.json"):
        with open(path + "/inference.json", "r") as f:
            config = json.loads(f.read())
            model_path = config.get("model_path", path)
            inpaint_model_path = config.get("inpaint_model_path", model_path)
            is_sdxl = config.get("is_sdxl", False)
            base_dimension = config.get("base_dimension", 512)
            base_model_variant = config.get("base_model_variant", None)
            base_inpaint_model_variant = config.get("base_inpaint_model_variant", None)

            m_config.base_model_path = model_path
            m_config.base_inpaint_model_path = inpaint_model_path
            m_config.is_sdxl = is_sdxl
            m_config.base_dimension = base_dimension
            m_config.low_gpu_mem = config.get("low_gpu_mem", False)
            m_config.base_model_variant = base_model_variant
            m_config.base_inpaint_model_variant = base_inpaint_model_variant

            #
            # if config.get("model_type") == "huggingface":
            #     model_dir = config["model_path"]
            # if config.get("model_type") == "s3":
            #     s3_config = config["model_path"]["s3"]
            #     base_url = s3_config["base_url"]
            #
            #     urls = [base_url + item for item in s3_config["paths"]]
            #     out_dir = Path.home() / ".cache" / "base_model"
            #     if out_dir.exists():
            #         print("Model already exist")
            #     else:
            #         print("Downloading model")
            #         BaseModelDownloader(urls, s3_config["paths"], out_dir).download()
            #     model_dir = str(out_dir)
    return m_config


class BaseModelDownloader:
    """
    A utility for fast download of base model from S3 or any CDN served storage.
    Works by downloading multiple files in parallel and dividing large files
    into smaller chunks and combining them at the end.

    Currently it uses multithreading (not multiprocessing) assuming GIL won't
    interfere with network/disk IO.

    Created by: KP
    """

    def __init__(self, urls: List[str], url_paths: List[str], out_dir: Path):
        self.urls = urls
        self.url_paths = url_paths
        shutil.rmtree(out_dir, ignore_errors=True)
        out_dir.mkdir(parents=True, exist_ok=True)
        self.out_dir = out_dir

    def download(self):
        threads = []
        batch_urls = {}

        for url, url_path in zip(self.urls, self.url_paths):
            out_dir = self.out_dir / url_path
            self.out_dir.parent.mkdir(parents=True, exist_ok=True)
            if url.endswith(".bin"):
                if "unet/" in url_path:
                    thread = Thread(
                        target=self.__download_parallel, args=(url, out_dir, 6)
                    )
                    thread.start()
                    threads.append(thread)
                else:
                    thread = Thread(
                        target=self.__download_files, args=([url], [out_dir])
                    )
                    thread.start()
                    threads.append(thread)
                    pass
            else:
                batch_urls[url] = out_dir

        if batch_urls:
            thread = Thread(
                target=self.__download_files,
                args=(list(batch_urls.keys()), list(batch_urls.values())),
            )
            thread.start()
            threads.append(thread)
            pass

        for thread in threads:
            thread.join()

    def __download_parallel(self, url, output_filename, num_parts=4):
        response = requests.head(url)
        total_size = int(response.headers.get("content-length", 0))
        print("total_size", total_size)

        chunk_size = total_size // num_parts
        ranges = [
            (i * chunk_size, (i + 1) * chunk_size - 1) for i in range(num_parts - 1)
        ]
        ranges.append((ranges[-1][1] + 1, total_size))

        print(ranges)

        save_dir = Path.home() / ".cache" / "download_parts"
        os.makedirs(save_dir, exist_ok=True)

        threads = []
        for i, (start, end) in enumerate(ranges):
            thread = Thread(
                target=self.__download_part, args=(url, start, end, i, save_dir)
            )
            thread.start()
            threads.append(thread)

        for thread in threads:
            thread.join()

        self.__combine_parts(save_dir, output_filename, num_parts)
        os.rmdir(save_dir)

    def __combine_parts(self, save_dir, output_filename, num_parts):
        part_files = [os.path.join(save_dir, f"part_{i}.tmp") for i in range(num_parts)]

        output_filename.parent.mkdir(parents=True, exist_ok=True)
        with open(output_filename, "wb") as output_file:
            for part_file in part_files:
                print("combining: ", part_file)
                with open(part_file, "rb") as part:
                    output_file.write(part.read())

            out_file_size = output_file.tell()
            print("out_file_size", out_file_size)

        for part_file in part_files:
            os.remove(part_file)

    def __download_part(self, url, start_byte, end_byte, part_num, save_dir):
        headers = {"Range": f"bytes={start_byte}-{end_byte}"}
        response = requests.get(url, headers=headers, stream=True)

        part_filename = os.path.join(save_dir, f"part_{part_num}.tmp")
        print("Downloading part: ", url, part_filename, end_byte - start_byte)

        with open(part_filename, "wb") as part_file, tqdm(
            desc=str(part_filename),
            total=end_byte - start_byte,
            unit="B",
            unit_scale=True,
            unit_divisor=1024,
        ) as bar:
            for chunk in response.iter_content(chunk_size=8192):
                if chunk:
                    size = part_file.write(chunk)
                    bar.update(size)

        return part_filename

    def __download_files(self, urls, out_paths: List[Path]):
        for url, out_path in zip(urls, out_paths):
            out_path.parent.mkdir(parents=True, exist_ok=True)
            with requests.get(url, stream=True) as r:
                print("Downloading: ", url)
                total_size = int(r.headers.get("content-length", 0))
                chunk_size = 8192
                r.raise_for_status()
                with open(out_path, "wb") as f, tqdm(
                    desc=str(out_path),
                    total=total_size,
                    unit="B",
                    unit_scale=True,
                    unit_divisor=1024,
                ) as bar:
                    for data in r.iter_content(chunk_size=chunk_size):
                        size = f.write(data)
                        bar.update(size)