File size: 4,777 Bytes
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
import torch.nn as nn
import torchvision.models as models


class PerceptualLoss(nn.Module):
    r"""
    Perceptual loss, VGG-based
    https://arxiv.org/abs/1603.08155
    https://github.com/dxyang/StyleTransfer/blob/master/utils.py
    """

    def __init__(self, weights=[1.0, 1.0, 1.0, 1.0, 1.0]):
        super(PerceptualLoss, self).__init__()
        self.add_module('vgg', VGG19())
        self.criterion = torch.nn.L1Loss()
        self.weights = weights

    def __call__(self, x, y):
        # Compute features
        x_vgg, y_vgg = self.vgg(x), self.vgg(y)

        content_loss = 0.0
        content_loss += self.weights[0] * self.criterion(x_vgg['relu1_1'], y_vgg['relu1_1'])
        content_loss += self.weights[1] * self.criterion(x_vgg['relu2_1'], y_vgg['relu2_1'])
        content_loss += self.weights[2] * self.criterion(x_vgg['relu3_1'], y_vgg['relu3_1'])
        content_loss += self.weights[3] * self.criterion(x_vgg['relu4_1'], y_vgg['relu4_1'])
        content_loss += self.weights[4] * self.criterion(x_vgg['relu5_1'], y_vgg['relu5_1'])


        return content_loss


class VGG19(torch.nn.Module):
    def __init__(self):
        super(VGG19, self).__init__()
        features = models.vgg19(pretrained=True).features
        self.relu1_1 = torch.nn.Sequential()
        self.relu1_2 = torch.nn.Sequential()

        self.relu2_1 = torch.nn.Sequential()
        self.relu2_2 = torch.nn.Sequential()

        self.relu3_1 = torch.nn.Sequential()
        self.relu3_2 = torch.nn.Sequential()
        self.relu3_3 = torch.nn.Sequential()
        self.relu3_4 = torch.nn.Sequential()

        self.relu4_1 = torch.nn.Sequential()
        self.relu4_2 = torch.nn.Sequential()
        self.relu4_3 = torch.nn.Sequential()
        self.relu4_4 = torch.nn.Sequential()

        self.relu5_1 = torch.nn.Sequential()
        self.relu5_2 = torch.nn.Sequential()
        self.relu5_3 = torch.nn.Sequential()
        self.relu5_4 = torch.nn.Sequential()

        for x in range(2):
            self.relu1_1.add_module(str(x), features[x])

        for x in range(2, 4):
            self.relu1_2.add_module(str(x), features[x])

        for x in range(4, 7):
            self.relu2_1.add_module(str(x), features[x])

        for x in range(7, 9):
            self.relu2_2.add_module(str(x), features[x])

        for x in range(9, 12):
            self.relu3_1.add_module(str(x), features[x])

        for x in range(12, 14):
            self.relu3_2.add_module(str(x), features[x])

        for x in range(14, 16):
            self.relu3_2.add_module(str(x), features[x])

        for x in range(16, 18):
            self.relu3_4.add_module(str(x), features[x])

        for x in range(18, 21):
            self.relu4_1.add_module(str(x), features[x])

        for x in range(21, 23):
            self.relu4_2.add_module(str(x), features[x])

        for x in range(23, 25):
            self.relu4_3.add_module(str(x), features[x])

        for x in range(25, 27):
            self.relu4_4.add_module(str(x), features[x])

        for x in range(27, 30):
            self.relu5_1.add_module(str(x), features[x])

        for x in range(30, 32):
            self.relu5_2.add_module(str(x), features[x])

        for x in range(32, 34):
            self.relu5_3.add_module(str(x), features[x])

        for x in range(34, 36):
            self.relu5_4.add_module(str(x), features[x])

        # don't need the gradients, just want the features
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, x):
        relu1_1 = self.relu1_1(x)
        relu1_2 = self.relu1_2(relu1_1)

        relu2_1 = self.relu2_1(relu1_2)
        relu2_2 = self.relu2_2(relu2_1)

        relu3_1 = self.relu3_1(relu2_2)
        relu3_2 = self.relu3_2(relu3_1)
        relu3_3 = self.relu3_3(relu3_2)
        relu3_4 = self.relu3_4(relu3_3)

        relu4_1 = self.relu4_1(relu3_4)
        relu4_2 = self.relu4_2(relu4_1)
        relu4_3 = self.relu4_3(relu4_2)
        relu4_4 = self.relu4_4(relu4_3)

        relu5_1 = self.relu5_1(relu4_4)
        relu5_2 = self.relu5_2(relu5_1)
        relu5_3 = self.relu5_3(relu5_2)
        relu5_4 = self.relu5_4(relu5_3)

        out = {
            'relu1_1': relu1_1,
            'relu1_2': relu1_2,

            'relu2_1': relu2_1,
            'relu2_2': relu2_2,

            'relu3_1': relu3_1,
            'relu3_2': relu3_2,
            'relu3_3': relu3_3,
            'relu3_4': relu3_4,

            'relu4_1': relu4_1,
            'relu4_2': relu4_2,
            'relu4_3': relu4_3,
            'relu4_4': relu4_4,

            'relu5_1': relu5_1,
            'relu5_2': relu5_2,
            'relu5_3': relu5_3,
            'relu5_4': relu5_4,
        }
        return out