File size: 6,226 Bytes
a3d6c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""
Modified by Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO].
Source url: https://github.com/xuebinqin/U-2-Net
License: Apache License 2.0
"""
from typing import Union

import torch
import torch.nn as nn

import math

__all__ = ["U2NETArchitecture"]


def _upsample_like(x, size):
    return nn.Upsample(size=size, mode="bilinear", align_corners=False)(x)


def _size_map(x, height):
    # {height: size} for Upsample
    size = list(x.shape[-2:])
    sizes = {}
    for h in range(1, height):
        sizes[h] = size
        size = [math.ceil(w / 2) for w in size]
    return sizes


class REBNCONV(nn.Module):
    def __init__(self, in_ch=3, out_ch=3, dilate=1):
        super(REBNCONV, self).__init__()

        self.conv_s1 = nn.Conv2d(
            in_ch, out_ch, 3, padding=1 * dilate, dilation=1 * dilate
        )
        self.bn_s1 = nn.BatchNorm2d(out_ch)
        self.relu_s1 = nn.ReLU(inplace=True)

    def forward(self, x):
        return self.relu_s1(self.bn_s1(self.conv_s1(x)))


class RSU(nn.Module):
    def __init__(self, name, height, in_ch, mid_ch, out_ch, dilated=False):
        super(RSU, self).__init__()
        self.name = name
        self.height = height
        self.dilated = dilated
        self._make_layers(height, in_ch, mid_ch, out_ch, dilated)

    def forward(self, x):
        sizes = _size_map(x, self.height)
        x = self.rebnconvin(x)

        # U-Net like symmetric encoder-decoder structure
        def unet(x, height=1):
            if height < self.height:
                x1 = getattr(self, f"rebnconv{height}")(x)
                if not self.dilated and height < self.height - 1:
                    x2 = unet(getattr(self, "downsample")(x1), height + 1)
                else:
                    x2 = unet(x1, height + 1)

                x = getattr(self, f"rebnconv{height}d")(torch.cat((x2, x1), 1))
                return (
                    _upsample_like(x, sizes[height - 1])
                    if not self.dilated and height > 1
                    else x
                )
            else:
                return getattr(self, f"rebnconv{height}")(x)

        return x + unet(x)

    def _make_layers(self, height, in_ch, mid_ch, out_ch, dilated=False):
        self.add_module("rebnconvin", REBNCONV(in_ch, out_ch))
        self.add_module("downsample", nn.MaxPool2d(2, stride=2, ceil_mode=True))

        self.add_module("rebnconv1", REBNCONV(out_ch, mid_ch))
        self.add_module("rebnconv1d", REBNCONV(mid_ch * 2, out_ch))

        for i in range(2, height):
            dilate = 1 if not dilated else 2 ** (i - 1)
            self.add_module(f"rebnconv{i}", REBNCONV(mid_ch, mid_ch, dilate=dilate))
            self.add_module(
                f"rebnconv{i}d", REBNCONV(mid_ch * 2, mid_ch, dilate=dilate)
            )

        dilate = 2 if not dilated else 2 ** (height - 1)
        self.add_module(f"rebnconv{height}", REBNCONV(mid_ch, mid_ch, dilate=dilate))


class U2NETArchitecture(nn.Module):
    def __init__(self, cfg_type: Union[dict, str] = "full", out_ch: int = 1):
        super(U2NETArchitecture, self).__init__()
        if isinstance(cfg_type, str):
            if cfg_type == "full":
                layers_cfgs = {
                    # cfgs for building RSUs and sides
                    # {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]}
                    "stage1": ["En_1", (7, 3, 32, 64), -1],
                    "stage2": ["En_2", (6, 64, 32, 128), -1],
                    "stage3": ["En_3", (5, 128, 64, 256), -1],
                    "stage4": ["En_4", (4, 256, 128, 512), -1],
                    "stage5": ["En_5", (4, 512, 256, 512, True), -1],
                    "stage6": ["En_6", (4, 512, 256, 512, True), 512],
                    "stage5d": ["De_5", (4, 1024, 256, 512, True), 512],
                    "stage4d": ["De_4", (4, 1024, 128, 256), 256],
                    "stage3d": ["De_3", (5, 512, 64, 128), 128],
                    "stage2d": ["De_2", (6, 256, 32, 64), 64],
                    "stage1d": ["De_1", (7, 128, 16, 64), 64],
                }
            else:
                raise ValueError("Unknown U^2-Net architecture conf. name")
        elif isinstance(cfg_type, dict):
            layers_cfgs = cfg_type
        else:
            raise ValueError("Unknown U^2-Net architecture conf. type")
        self.out_ch = out_ch
        self._make_layers(layers_cfgs)

    def forward(self, x):
        sizes = _size_map(x, self.height)
        maps = []  # storage for maps

        # side saliency map
        def unet(x, height=1):
            if height < 6:
                x1 = getattr(self, f"stage{height}")(x)
                x2 = unet(getattr(self, "downsample")(x1), height + 1)
                x = getattr(self, f"stage{height}d")(torch.cat((x2, x1), 1))
                side(x, height)
                return _upsample_like(x, sizes[height - 1]) if height > 1 else x
            else:
                x = getattr(self, f"stage{height}")(x)
                side(x, height)
                return _upsample_like(x, sizes[height - 1])

        def side(x, h):
            # side output saliency map (before sigmoid)
            x = getattr(self, f"side{h}")(x)
            x = _upsample_like(x, sizes[1])
            maps.append(x)

        def fuse():
            # fuse saliency probability maps
            maps.reverse()
            x = torch.cat(maps, 1)
            x = getattr(self, "outconv")(x)
            maps.insert(0, x)
            return [torch.sigmoid(x) for x in maps]

        unet(x)
        maps = fuse()
        return maps

    def _make_layers(self, cfgs):
        self.height = int((len(cfgs) + 1) / 2)
        self.add_module("downsample", nn.MaxPool2d(2, stride=2, ceil_mode=True))
        for k, v in cfgs.items():
            # build rsu block
            self.add_module(k, RSU(v[0], *v[1]))
            if v[2] > 0:
                # build side layer
                self.add_module(
                    f"side{v[0][-1]}", nn.Conv2d(v[2], self.out_ch, 3, padding=1)
                )
        # build fuse layer
        self.add_module(
            "outconv", nn.Conv2d(int(self.height * self.out_ch), self.out_ch, 1)
        )