File size: 4,960 Bytes
a3d6c18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
"""
Source url: https://github.com/OPHoperHPO/image-background-remove-tool
Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO].
License: Apache License 2.0
"""
import pathlib
from typing import List, Union
import PIL.Image
import numpy as np
import torch
from PIL import Image
from carvekit.ml.arch.u2net.u2net import U2NETArchitecture
from carvekit.ml.files.models_loc import u2net_full_pretrained
from carvekit.utils.image_utils import load_image, convert_image
from carvekit.utils.pool_utils import thread_pool_processing, batch_generator
__all__ = ["U2NET"]
class U2NET(U2NETArchitecture):
"""U^2-Net model interface"""
def __init__(
self,
layers_cfg="full",
device="cpu",
input_image_size: Union[List[int], int] = 320,
batch_size: int = 10,
load_pretrained: bool = True,
fp16: bool = False,
):
"""
Initialize the U2NET model
Args:
layers_cfg: neural network layers configuration
device: processing device
input_image_size: input image size
batch_size: the number of images that the neural network processes in one run
load_pretrained: loading pretrained model
fp16: use fp16 precision // not supported at this moment.
"""
super(U2NET, self).__init__(cfg_type=layers_cfg, out_ch=1)
self.device = device
self.batch_size = batch_size
if isinstance(input_image_size, list):
self.input_image_size = input_image_size[:2]
else:
self.input_image_size = (input_image_size, input_image_size)
self.to(device)
if load_pretrained:
self.load_state_dict(
torch.load(u2net_full_pretrained(), map_location=self.device)
)
self.eval()
def data_preprocessing(self, data: PIL.Image.Image) -> torch.FloatTensor:
"""
Transform input image to suitable data format for neural network
Args:
data: input image
Returns:
input for neural network
"""
resized = data.resize(self.input_image_size, resample=3)
# noinspection PyTypeChecker
resized_arr = np.array(resized, dtype=float)
temp_image = np.zeros((resized_arr.shape[0], resized_arr.shape[1], 3))
if np.max(resized_arr) != 0:
resized_arr /= np.max(resized_arr)
temp_image[:, :, 0] = (resized_arr[:, :, 0] - 0.485) / 0.229
temp_image[:, :, 1] = (resized_arr[:, :, 1] - 0.456) / 0.224
temp_image[:, :, 2] = (resized_arr[:, :, 2] - 0.406) / 0.225
temp_image = temp_image.transpose((2, 0, 1))
temp_image = np.expand_dims(temp_image, 0)
return torch.from_numpy(temp_image).type(torch.FloatTensor)
@staticmethod
def data_postprocessing(
data: torch.tensor, original_image: PIL.Image.Image
) -> PIL.Image.Image:
"""
Transforms output data from neural network to suitable data
format for using with other components of this framework.
Args:
data: output data from neural network
original_image: input image which was used for predicted data
Returns:
Segmentation mask as PIL Image instance
"""
data = data.unsqueeze(0)
mask = data[:, 0, :, :]
ma = torch.max(mask) # Normalizes prediction
mi = torch.min(mask)
predict = ((mask - mi) / (ma - mi)).squeeze()
predict_np = predict.cpu().data.numpy() * 255
mask = Image.fromarray(predict_np).convert("L")
mask = mask.resize(original_image.size, resample=3)
return mask
def __call__(
self, images: List[Union[str, pathlib.Path, PIL.Image.Image]]
) -> List[PIL.Image.Image]:
"""
Passes input images though neural network and returns segmentation masks as PIL.Image.Image instances
Args:
images: input images
Returns:
segmentation masks as for input images, as PIL.Image.Image instances
"""
collect_masks = []
for image_batch in batch_generator(images, self.batch_size):
images = thread_pool_processing(
lambda x: convert_image(load_image(x)), image_batch
)
batches = torch.vstack(
thread_pool_processing(self.data_preprocessing, images)
)
with torch.no_grad():
batches = batches.to(self.device)
masks, d2, d3, d4, d5, d6, d7 = super(U2NET, self).__call__(batches)
masks_cpu = masks.cpu()
del d2, d3, d4, d5, d6, d7, batches, masks
masks = thread_pool_processing(
lambda x: self.data_postprocessing(masks_cpu[x], images[x]),
range(len(images)),
)
collect_masks += masks
return collect_masks
|