File size: 9,180 Bytes
1bc457e
19b3da3
 
 
 
1bc457e
a3f5c82
19b3da3
1bc457e
 
 
 
19b3da3
 
 
10230ea
a3d6c18
19b3da3
 
 
830fe50
10230ea
 
 
 
 
 
 
19b3da3
1bc457e
fd5252e
19b3da3
 
 
 
 
 
 
 
 
 
 
 
1bc457e
19b3da3
1bc457e
19b3da3
a3d6c18
 
1bc457e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10230ea
1bc457e
 
 
 
f70725b
 
 
 
 
 
 
 
 
 
 
 
1bc457e
 
 
 
 
 
 
 
 
 
 
19b3da3
 
 
 
 
10230ea
 
 
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f70725b
 
 
 
 
 
 
 
 
 
 
 
04c5fb7
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d6c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc457e
10230ea
a3d6c18
 
 
 
 
 
 
 
 
 
 
19b3da3
 
 
 
 
a3f5c82
 
 
 
19b3da3
 
8aeb9e5
 
 
 
 
19b3da3
 
 
 
8aeb9e5
 
 
 
 
19b3da3
 
 
830fe50
 
 
19b3da3
 
 
 
 
 
fd5252e
 
19b3da3
 
 
 
a3d6c18
1bc457e
19b3da3
 
 
 
 
 
 
1bc457e
10230ea
19b3da3
049a85c
 
 
a3d6c18
19b3da3
 
 
 
1bc457e
 
10230ea
1bc457e
 
 
 
19b3da3
 
 
 
 
 
 
 
 
 
 
1bc457e
 
 
ae524a9
 
b71808f
1bc457e
ae524a9
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
a3d6c18
 
1bc457e
 
 
 
19b3da3
 
 
 
 
1bc457e
a3f5c82
19b3da3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os
from io import BytesIO

import torch

import internals.util.prompt as prompt_util
from internals.data.dataAccessor import update_db, update_db_source_failed
from internals.data.task import ModelType, Task, TaskType
from internals.pipelines.controlnets import ControlNet
from internals.pipelines.high_res import HighRes
from internals.pipelines.img_classifier import ImageClassifier
from internals.pipelines.img_to_text import Image2Text
from internals.pipelines.inpainter import InPainter
from internals.pipelines.object_remove import ObjectRemoval
from internals.pipelines.prompt_modifier import PromptModifier
from internals.pipelines.remove_background import RemoveBackground, RemoveBackgroundV2
from internals.pipelines.replace_background import ReplaceBackground
from internals.pipelines.safety_checker import SafetyChecker
from internals.pipelines.upscaler import Upscaler
from internals.util.avatar import Avatar
from internals.util.cache import auto_clear_cuda_and_gc, clear_cuda, clear_cuda_and_gc
from internals.util.commons import construct_default_s3_url, upload_image, upload_images
from internals.util.config import (
    num_return_sequences,
    set_configs_from_task,
    set_model_config,
    set_root_dir,
)
from internals.util.failure_hander import FailureHandler
from internals.util.lora_style import LoraStyle
from internals.util.model_loader import load_model_from_config
from internals.util.slack import Slack

torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True

auto_mode = False

slack = Slack()

prompt_modifier = PromptModifier(num_of_sequences=num_return_sequences)
upscaler = Upscaler()
inpainter = InPainter()
controlnet = ControlNet()
safety_checker = SafetyChecker()
high_res = HighRes()
object_removal = ObjectRemoval()
remove_background_v2 = RemoveBackgroundV2()
replace_background = ReplaceBackground()
img2text = Image2Text()
img_classifier = ImageClassifier()
avatar = Avatar()
lora_style = LoraStyle()


def get_patched_prompt_tile_upscale(task: Task):
    return prompt_util.get_patched_prompt_tile_upscale(
        task, avatar, lora_style, img_classifier, img2text
    )


@update_db
@auto_clear_cuda_and_gc(controlnet)
@slack.auto_send_alert
def tile_upscale(task: Task):
    output_key = "crecoAI/{}_tile_upscaler.png".format(task.get_taskId())

    prompt = get_patched_prompt_tile_upscale(task)

    controlnet.load_model("tile_upscaler")

    lora_patcher = lora_style.get_patcher(controlnet.pipe, task.get_style())
    lora_patcher.patch()

    kwargs = {
        "imageUrl": task.get_imageUrl(),
        "seed": task.get_seed(),
        "num_inference_steps": task.get_steps(),
        "negative_prompt": task.get_negative_prompt(),
        "width": task.get_width(),
        "height": task.get_height(),
        "prompt": prompt,
        "resize_dimension": task.get_resize_dimension(),
        **task.cnt_kwargs(),
    }
    images, has_nsfw = controlnet.process(**kwargs)

    generated_image_url = upload_image(images[0], output_key)

    lora_patcher.cleanup()
    controlnet.cleanup()

    return {
        "modified_prompts": prompt,
        "generated_image_url": generated_image_url,
        "has_nsfw": has_nsfw,
    }


@update_db
@slack.auto_send_alert
def remove_bg(task: Task):
    output_image = remove_background_v2.remove(
        task.get_imageUrl(), model_type=task.get_modelType()
    )

    output_key = "crecoAI/{}_rmbg.png".format(task.get_taskId())
    upload_image(output_image, output_key)

    return {"generated_image_url": construct_default_s3_url(output_key)}


@update_db
@slack.auto_send_alert
def inpaint(task: Task):
    prompt = avatar.add_code_names(task.get_prompt())
    if task.is_prompt_engineering():
        prompt = prompt_modifier.modify(prompt)
    else:
        prompt = [prompt] * num_return_sequences

    print({"prompts": prompt})

    kwargs = {
        "prompt": prompt,
        "image_url": task.get_imageUrl(),
        "mask_image_url": task.get_maskImageUrl(),
        "width": task.get_width(),
        "height": task.get_height(),
        "seed": task.get_seed(),
        "negative_prompt": [task.get_negative_prompt()] * num_return_sequences,
        "num_inference_steps": task.get_steps(),
        **task.ip_kwargs(),
    }
    images = inpainter.process(**kwargs)

    generated_image_urls = upload_images(images, "_inpaint", task.get_taskId())

    clear_cuda()

    return {"modified_prompts": prompt, "generated_image_urls": generated_image_urls}


@update_db
@slack.auto_send_alert
def remove_object(task: Task):
    output_key = "crecoAI/{}_object_remove.png".format(task.get_taskId())

    images = object_removal.process(
        image_url=task.get_imageUrl(),
        mask_image_url=task.get_maskImageUrl(),
        seed=task.get_seed(),
        width=task.get_width(),
        height=task.get_height(),
    )
    generated_image_urls = upload_image(images[0], output_key)

    clear_cuda()

    return {"generated_image_urls": generated_image_urls}


@update_db
@slack.auto_send_alert
def replace_bg(task: Task):
    prompt = task.get_prompt()
    if task.is_prompt_engineering():
        prompt = prompt_modifier.modify(prompt)
    else:
        prompt = [prompt] * num_return_sequences

    images, has_nsfw = replace_background.replace(
        image=task.get_imageUrl(),
        prompt=prompt,
        negative_prompt=[task.get_negative_prompt()] * num_return_sequences,
        seed=task.get_seed(),
        width=task.get_width(),
        height=task.get_height(),
        steps=task.get_steps(),
        conditioning_scale=task.rbg_controlnet_conditioning_scale(),
        model_type=task.get_modelType(),
    )

    generated_image_urls = upload_images(images, "_replace_bg", task.get_taskId())

    return {
        "modified_prompts": prompt,
        "generated_image_urls": generated_image_urls,
        "has_nsfw": has_nsfw,
    }


@update_db
@slack.auto_send_alert
def upscale_image(task: Task):
    output_key = "crecoAI/{}_upscale.png".format(task.get_taskId())
    out_img = None
    if (
        task.get_modelType() == ModelType.ANIME
        or task.get_modelType() == ModelType.COMIC
    ):
        print("Using Anime model")
        out_img = upscaler.upscale_anime(
            image=task.get_imageUrl(),
            width=task.get_width(),
            height=task.get_height(),
            face_enhance=task.get_face_enhance(),
            resize_dimension=task.get_resize_dimension(),
        )
    else:
        print("Using Real model")
        out_img = upscaler.upscale(
            image=task.get_imageUrl(),
            width=task.get_width(),
            height=task.get_height(),
            face_enhance=task.get_face_enhance(),
            resize_dimension=task.get_resize_dimension(),
        )

    upload_image(BytesIO(out_img), output_key)

    clear_cuda_and_gc()

    return {"generated_image_url": construct_default_s3_url(output_key)}


def model_fn(model_dir):
    print("Logs: model loaded .... starts")

    config = load_model_from_config(model_dir)
    set_model_config(config)
    set_root_dir(__file__)

    FailureHandler.register()

    avatar.load_local(model_dir)
    lora_style.load(model_dir)

    prompt_modifier.load()
    safety_checker.load()

    object_removal.load(model_dir)
    upscaler.load()
    inpainter.load()
    high_res.load()
    controlnet.init(high_res)

    replace_background.load(
        upscaler=upscaler, remove_background=remove_background_v2, high_res=high_res
    )

    print("Logs: model loaded ....")
    return


def load_model_by_task(task: Task):
    if task.get_type() == TaskType.TILE_UPSCALE:
        controlnet.load_model("tile_upscaler")

    safety_checker.apply(controlnet)


@FailureHandler.clear
def predict_fn(data, pipe):
    task = Task(data)
    print("task is ", data)

    FailureHandler.handle(task)

    try:
        # Set set_environment
        set_configs_from_task(task)

        # Load model based on task
        load_model_by_task(task)

        # Apply safety checker based on environment
        safety_checker.apply(inpainter)
        safety_checker.apply(replace_background)
        safety_checker.apply(high_res)

        # Fetch avatars
        avatar.fetch_from_network(task.get_model_id())

        task_type = task.get_type()

        if task_type == TaskType.REMOVE_BG:
            return remove_bg(task)
        elif task_type == TaskType.INPAINT:
            return inpaint(task)
        elif task_type == TaskType.UPSCALE_IMAGE:
            return upscale_image(task)
        elif task_type == TaskType.OBJECT_REMOVAL:
            return remove_object(task)
        elif task_type == TaskType.REPLACE_BG:
            return replace_bg(task)
        elif task_type == TaskType.TILE_UPSCALE:
            return tile_upscale(task)
        elif task_type == TaskType.SYSTEM_CMD:
            os.system(task.get_prompt())
        else:
            raise Exception("Invalid task type")
    except Exception as e:
        print(f"Error: {e}")
        slack.error_alert(task, e)
        controlnet.cleanup()
        update_db_source_failed(task.get_sourceId(), task.get_userId())
        return None