File size: 14,606 Bytes
ea5c647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import math
import argparse
import os
import time
import torch
from safetensors.torch import load_file, save_file
from library import sai_model_spec, train_util
import library.model_util as model_util
import lora


def load_state_dict(file_name, dtype):
    if os.path.splitext(file_name)[1] == ".safetensors":
        sd = load_file(file_name)
        metadata = train_util.load_metadata_from_safetensors(file_name)
    else:
        sd = torch.load(file_name, map_location="cpu")
        metadata = {}

    for key in list(sd.keys()):
        if type(sd[key]) == torch.Tensor:
            sd[key] = sd[key].to(dtype)

    return sd, metadata


def save_to_file(file_name, model, state_dict, dtype, metadata):
    if dtype is not None:
        for key in list(state_dict.keys()):
            if type(state_dict[key]) == torch.Tensor:
                state_dict[key] = state_dict[key].to(dtype)

    if os.path.splitext(file_name)[1] == ".safetensors":
        save_file(model, file_name, metadata=metadata)
    else:
        torch.save(model, file_name)


def merge_to_sd_model(text_encoder, unet, models, ratios, merge_dtype):
    text_encoder.to(merge_dtype)
    unet.to(merge_dtype)

    # create module map
    name_to_module = {}
    for i, root_module in enumerate([text_encoder, unet]):
        if i == 0:
            prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER
            target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
        else:
            prefix = lora.LoRANetwork.LORA_PREFIX_UNET
            target_replace_modules = (
                lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE + lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
            )

        for name, module in root_module.named_modules():
            if module.__class__.__name__ in target_replace_modules:
                for child_name, child_module in module.named_modules():
                    if child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "Conv2d":
                        lora_name = prefix + "." + name + "." + child_name
                        lora_name = lora_name.replace(".", "_")
                        name_to_module[lora_name] = child_module

    for model, ratio in zip(models, ratios):
        print(f"loading: {model}")
        lora_sd, _ = load_state_dict(model, merge_dtype)

        print(f"merging...")
        for key in lora_sd.keys():
            if "lora_down" in key:
                up_key = key.replace("lora_down", "lora_up")
                alpha_key = key[: key.index("lora_down")] + "alpha"

                # find original module for this lora
                module_name = ".".join(key.split(".")[:-2])  # remove trailing ".lora_down.weight"
                if module_name not in name_to_module:
                    print(f"no module found for LoRA weight: {key}")
                    continue
                module = name_to_module[module_name]
                # print(f"apply {key} to {module}")

                down_weight = lora_sd[key]
                up_weight = lora_sd[up_key]

                dim = down_weight.size()[0]
                alpha = lora_sd.get(alpha_key, dim)
                scale = alpha / dim

                # W <- W + U * D
                weight = module.weight
                if len(weight.size()) == 2:
                    # linear
                    if len(up_weight.size()) == 4:  # use linear projection mismatch
                        up_weight = up_weight.squeeze(3).squeeze(2)
                        down_weight = down_weight.squeeze(3).squeeze(2)
                    weight = weight + ratio * (up_weight @ down_weight) * scale
                elif down_weight.size()[2:4] == (1, 1):
                    # conv2d 1x1
                    weight = (
                        weight
                        + ratio
                        * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
                        * scale
                    )
                else:
                    # conv2d 3x3
                    conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
                    # print(conved.size(), weight.size(), module.stride, module.padding)
                    weight = weight + ratio * conved * scale

                module.weight = torch.nn.Parameter(weight)


def merge_lora_models(models, ratios, merge_dtype, concat=False, shuffle=False):
    base_alphas = {}  # alpha for merged model
    base_dims = {}

    merged_sd = {}
    v2 = None
    base_model = None
    for model, ratio in zip(models, ratios):
        print(f"loading: {model}")
        lora_sd, lora_metadata = load_state_dict(model, merge_dtype)

        if lora_metadata is not None:
            if v2 is None:
                v2 = lora_metadata.get(train_util.SS_METADATA_KEY_V2, None)  # return string
            if base_model is None:
                base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None)

        # get alpha and dim
        alphas = {}  # alpha for current model
        dims = {}  # dims for current model
        for key in lora_sd.keys():
            if "alpha" in key:
                lora_module_name = key[: key.rfind(".alpha")]
                alpha = float(lora_sd[key].detach().numpy())
                alphas[lora_module_name] = alpha
                if lora_module_name not in base_alphas:
                    base_alphas[lora_module_name] = alpha
            elif "lora_down" in key:
                lora_module_name = key[: key.rfind(".lora_down")]
                dim = lora_sd[key].size()[0]
                dims[lora_module_name] = dim
                if lora_module_name not in base_dims:
                    base_dims[lora_module_name] = dim

        for lora_module_name in dims.keys():
            if lora_module_name not in alphas:
                alpha = dims[lora_module_name]
                alphas[lora_module_name] = alpha
                if lora_module_name not in base_alphas:
                    base_alphas[lora_module_name] = alpha

        print(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}")

        # merge
        print(f"merging...")
        for key in lora_sd.keys():
            if "alpha" in key:
                continue
            if "lora_up" in key and concat:
                concat_dim = 1
            elif "lora_down" in key and concat:
                concat_dim = 0
            else:
                concat_dim = None

            lora_module_name = key[: key.rfind(".lora_")]

            base_alpha = base_alphas[lora_module_name]
            alpha = alphas[lora_module_name]

            scale = math.sqrt(alpha / base_alpha) * ratio
            scale = abs(scale) if "lora_up" in key else scale # マイナスの重みに対応する。

            if key in merged_sd:
                assert (
                    merged_sd[key].size() == lora_sd[key].size() or concat_dim is not None
                ), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
                if concat_dim is not None:
                    merged_sd[key] = torch.cat([merged_sd[key], lora_sd[key] * scale], dim=concat_dim)
                else:
                    merged_sd[key] = merged_sd[key] + lora_sd[key] * scale
            else:
                merged_sd[key] = lora_sd[key] * scale

    # set alpha to sd
    for lora_module_name, alpha in base_alphas.items():
        key = lora_module_name + ".alpha"
        merged_sd[key] = torch.tensor(alpha)
        if shuffle:
            key_down = lora_module_name + ".lora_down.weight"
            key_up = lora_module_name + ".lora_up.weight"
            dim = merged_sd[key_down].shape[0]
            perm = torch.randperm(dim)
            merged_sd[key_down] = merged_sd[key_down][perm]
            merged_sd[key_up] = merged_sd[key_up][:,perm]

    print("merged model")
    print(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}")

    # check all dims are same
    dims_list = list(set(base_dims.values()))
    alphas_list = list(set(base_alphas.values()))
    all_same_dims = True
    all_same_alphas = True
    for dims in dims_list:
        if dims != dims_list[0]:
            all_same_dims = False
            break
    for alphas in alphas_list:
        if alphas != alphas_list[0]:
            all_same_alphas = False
            break

    # build minimum metadata
    dims = f"{dims_list[0]}" if all_same_dims else "Dynamic"
    alphas = f"{alphas_list[0]}" if all_same_alphas else "Dynamic"
    metadata = train_util.build_minimum_network_metadata(v2, base_model, "networks.lora", dims, alphas, None)

    return merged_sd, metadata, v2 == "True"


def merge(args):
    assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"

    def str_to_dtype(p):
        if p == "float":
            return torch.float
        if p == "fp16":
            return torch.float16
        if p == "bf16":
            return torch.bfloat16
        return None

    merge_dtype = str_to_dtype(args.precision)
    save_dtype = str_to_dtype(args.save_precision)
    if save_dtype is None:
        save_dtype = merge_dtype

    if args.sd_model is not None:
        print(f"loading SD model: {args.sd_model}")

        text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.sd_model)

        merge_to_sd_model(text_encoder, unet, args.models, args.ratios, merge_dtype)

        if args.no_metadata:
            sai_metadata = None
        else:
            merged_from = sai_model_spec.build_merged_from([args.sd_model] + args.models)
            title = os.path.splitext(os.path.basename(args.save_to))[0]
            sai_metadata = sai_model_spec.build_metadata(
                None,
                args.v2,
                args.v2,
                False,
                False,
                False,
                time.time(),
                title=title,
                merged_from=merged_from,
                is_stable_diffusion_ckpt=True,
            )
            if args.v2:
                # TODO read sai modelspec
                print(
                    "Cannot determine if model is for v-prediction, so save metadata as v-prediction / modelがv-prediction用か否か不明なため、仮にv-prediction用としてmetadataを保存します"
                )

        print(f"saving SD model to: {args.save_to}")
        model_util.save_stable_diffusion_checkpoint(
            args.v2, args.save_to, text_encoder, unet, args.sd_model, 0, 0, sai_metadata, save_dtype, vae
        )
    else:
        state_dict, metadata, v2 = merge_lora_models(args.models, args.ratios, merge_dtype, args.concat, args.shuffle)

        print(f"calculating hashes and creating metadata...")

        model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
        metadata["sshs_model_hash"] = model_hash
        metadata["sshs_legacy_hash"] = legacy_hash

        if not args.no_metadata:
            merged_from = sai_model_spec.build_merged_from(args.models)
            title = os.path.splitext(os.path.basename(args.save_to))[0]
            sai_metadata = sai_model_spec.build_metadata(
                state_dict, v2, v2, False, True, False, time.time(), title=title, merged_from=merged_from
            )
            if v2:
                # TODO read sai modelspec
                print(
                    "Cannot determine if LoRA is for v-prediction, so save metadata as v-prediction / LoRAがv-prediction用か否か不明なため、仮にv-prediction用としてmetadataを保存します"
                )
            metadata.update(sai_metadata)

        print(f"saving model to: {args.save_to}")
        save_to_file(args.save_to, state_dict, state_dict, save_dtype, metadata)


def setup_parser() -> argparse.ArgumentParser:
    parser = argparse.ArgumentParser()
    parser.add_argument("--v2", action="store_true", help="load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む")
    parser.add_argument(
        "--save_precision",
        type=str,
        default=None,
        choices=[None, "float", "fp16", "bf16"],
        help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ",
    )
    parser.add_argument(
        "--precision",
        type=str,
        default="float",
        choices=["float", "fp16", "bf16"],
        help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)",
    )
    parser.add_argument(
        "--sd_model",
        type=str,
        default=None,
        help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする",
    )
    parser.add_argument(
        "--save_to", type=str, default=None, help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors"
    )
    parser.add_argument(
        "--models", type=str, nargs="*", help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors"
    )
    parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率")
    parser.add_argument(
        "--no_metadata",
        action="store_true",
        help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / "
        + "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)",
    )
    parser.add_argument(
        "--concat",
        action="store_true",
        help="concat lora instead of merge (The dim(rank) of the output LoRA is the sum of the input dims) / "
        + "マージの代わりに結合する(LoRAのdim(rank)は入力dimの合計になる)",
    )
    parser.add_argument(
        "--shuffle",
        action="store_true",
        help="shuffle lora weight./ "
        + "LoRAの重みをシャッフルする",
    )
    
    return parser


if __name__ == "__main__":
    parser = setup_parser()

    args = parser.parse_args()
    merge(args)