File size: 14,606 Bytes
ea5c647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import math
import argparse
import os
import time
import torch
from safetensors.torch import load_file, save_file
from library import sai_model_spec, train_util
import library.model_util as model_util
import lora
def load_state_dict(file_name, dtype):
if os.path.splitext(file_name)[1] == ".safetensors":
sd = load_file(file_name)
metadata = train_util.load_metadata_from_safetensors(file_name)
else:
sd = torch.load(file_name, map_location="cpu")
metadata = {}
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd, metadata
def save_to_file(file_name, model, state_dict, dtype, metadata):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == ".safetensors":
save_file(model, file_name, metadata=metadata)
else:
torch.save(model, file_name)
def merge_to_sd_model(text_encoder, unet, models, ratios, merge_dtype):
text_encoder.to(merge_dtype)
unet.to(merge_dtype)
# create module map
name_to_module = {}
for i, root_module in enumerate([text_encoder, unet]):
if i == 0:
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER
target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
else:
prefix = lora.LoRANetwork.LORA_PREFIX_UNET
target_replace_modules = (
lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE + lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
)
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
if child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "Conv2d":
lora_name = prefix + "." + name + "." + child_name
lora_name = lora_name.replace(".", "_")
name_to_module[lora_name] = child_module
for model, ratio in zip(models, ratios):
print(f"loading: {model}")
lora_sd, _ = load_state_dict(model, merge_dtype)
print(f"merging...")
for key in lora_sd.keys():
if "lora_down" in key:
up_key = key.replace("lora_down", "lora_up")
alpha_key = key[: key.index("lora_down")] + "alpha"
# find original module for this lora
module_name = ".".join(key.split(".")[:-2]) # remove trailing ".lora_down.weight"
if module_name not in name_to_module:
print(f"no module found for LoRA weight: {key}")
continue
module = name_to_module[module_name]
# print(f"apply {key} to {module}")
down_weight = lora_sd[key]
up_weight = lora_sd[up_key]
dim = down_weight.size()[0]
alpha = lora_sd.get(alpha_key, dim)
scale = alpha / dim
# W <- W + U * D
weight = module.weight
if len(weight.size()) == 2:
# linear
if len(up_weight.size()) == 4: # use linear projection mismatch
up_weight = up_weight.squeeze(3).squeeze(2)
down_weight = down_weight.squeeze(3).squeeze(2)
weight = weight + ratio * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
+ ratio
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# print(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + ratio * conved * scale
module.weight = torch.nn.Parameter(weight)
def merge_lora_models(models, ratios, merge_dtype, concat=False, shuffle=False):
base_alphas = {} # alpha for merged model
base_dims = {}
merged_sd = {}
v2 = None
base_model = None
for model, ratio in zip(models, ratios):
print(f"loading: {model}")
lora_sd, lora_metadata = load_state_dict(model, merge_dtype)
if lora_metadata is not None:
if v2 is None:
v2 = lora_metadata.get(train_util.SS_METADATA_KEY_V2, None) # return string
if base_model is None:
base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None)
# get alpha and dim
alphas = {} # alpha for current model
dims = {} # dims for current model
for key in lora_sd.keys():
if "alpha" in key:
lora_module_name = key[: key.rfind(".alpha")]
alpha = float(lora_sd[key].detach().numpy())
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
elif "lora_down" in key:
lora_module_name = key[: key.rfind(".lora_down")]
dim = lora_sd[key].size()[0]
dims[lora_module_name] = dim
if lora_module_name not in base_dims:
base_dims[lora_module_name] = dim
for lora_module_name in dims.keys():
if lora_module_name not in alphas:
alpha = dims[lora_module_name]
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
print(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}")
# merge
print(f"merging...")
for key in lora_sd.keys():
if "alpha" in key:
continue
if "lora_up" in key and concat:
concat_dim = 1
elif "lora_down" in key and concat:
concat_dim = 0
else:
concat_dim = None
lora_module_name = key[: key.rfind(".lora_")]
base_alpha = base_alphas[lora_module_name]
alpha = alphas[lora_module_name]
scale = math.sqrt(alpha / base_alpha) * ratio
scale = abs(scale) if "lora_up" in key else scale # マイナスの重みに対応する。
if key in merged_sd:
assert (
merged_sd[key].size() == lora_sd[key].size() or concat_dim is not None
), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
if concat_dim is not None:
merged_sd[key] = torch.cat([merged_sd[key], lora_sd[key] * scale], dim=concat_dim)
else:
merged_sd[key] = merged_sd[key] + lora_sd[key] * scale
else:
merged_sd[key] = lora_sd[key] * scale
# set alpha to sd
for lora_module_name, alpha in base_alphas.items():
key = lora_module_name + ".alpha"
merged_sd[key] = torch.tensor(alpha)
if shuffle:
key_down = lora_module_name + ".lora_down.weight"
key_up = lora_module_name + ".lora_up.weight"
dim = merged_sd[key_down].shape[0]
perm = torch.randperm(dim)
merged_sd[key_down] = merged_sd[key_down][perm]
merged_sd[key_up] = merged_sd[key_up][:,perm]
print("merged model")
print(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}")
# check all dims are same
dims_list = list(set(base_dims.values()))
alphas_list = list(set(base_alphas.values()))
all_same_dims = True
all_same_alphas = True
for dims in dims_list:
if dims != dims_list[0]:
all_same_dims = False
break
for alphas in alphas_list:
if alphas != alphas_list[0]:
all_same_alphas = False
break
# build minimum metadata
dims = f"{dims_list[0]}" if all_same_dims else "Dynamic"
alphas = f"{alphas_list[0]}" if all_same_alphas else "Dynamic"
metadata = train_util.build_minimum_network_metadata(v2, base_model, "networks.lora", dims, alphas, None)
return merged_sd, metadata, v2 == "True"
def merge(args):
assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
def str_to_dtype(p):
if p == "float":
return torch.float
if p == "fp16":
return torch.float16
if p == "bf16":
return torch.bfloat16
return None
merge_dtype = str_to_dtype(args.precision)
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
if args.sd_model is not None:
print(f"loading SD model: {args.sd_model}")
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.sd_model)
merge_to_sd_model(text_encoder, unet, args.models, args.ratios, merge_dtype)
if args.no_metadata:
sai_metadata = None
else:
merged_from = sai_model_spec.build_merged_from([args.sd_model] + args.models)
title = os.path.splitext(os.path.basename(args.save_to))[0]
sai_metadata = sai_model_spec.build_metadata(
None,
args.v2,
args.v2,
False,
False,
False,
time.time(),
title=title,
merged_from=merged_from,
is_stable_diffusion_ckpt=True,
)
if args.v2:
# TODO read sai modelspec
print(
"Cannot determine if model is for v-prediction, so save metadata as v-prediction / modelがv-prediction用か否か不明なため、仮にv-prediction用としてmetadataを保存します"
)
print(f"saving SD model to: {args.save_to}")
model_util.save_stable_diffusion_checkpoint(
args.v2, args.save_to, text_encoder, unet, args.sd_model, 0, 0, sai_metadata, save_dtype, vae
)
else:
state_dict, metadata, v2 = merge_lora_models(args.models, args.ratios, merge_dtype, args.concat, args.shuffle)
print(f"calculating hashes and creating metadata...")
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
if not args.no_metadata:
merged_from = sai_model_spec.build_merged_from(args.models)
title = os.path.splitext(os.path.basename(args.save_to))[0]
sai_metadata = sai_model_spec.build_metadata(
state_dict, v2, v2, False, True, False, time.time(), title=title, merged_from=merged_from
)
if v2:
# TODO read sai modelspec
print(
"Cannot determine if LoRA is for v-prediction, so save metadata as v-prediction / LoRAがv-prediction用か否か不明なため、仮にv-prediction用としてmetadataを保存します"
)
metadata.update(sai_metadata)
print(f"saving model to: {args.save_to}")
save_to_file(args.save_to, state_dict, state_dict, save_dtype, metadata)
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("--v2", action="store_true", help="load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む")
parser.add_argument(
"--save_precision",
type=str,
default=None,
choices=[None, "float", "fp16", "bf16"],
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ",
)
parser.add_argument(
"--precision",
type=str,
default="float",
choices=["float", "fp16", "bf16"],
help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)",
)
parser.add_argument(
"--sd_model",
type=str,
default=None,
help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする",
)
parser.add_argument(
"--save_to", type=str, default=None, help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors"
)
parser.add_argument(
"--models", type=str, nargs="*", help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors"
)
parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率")
parser.add_argument(
"--no_metadata",
action="store_true",
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / "
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)",
)
parser.add_argument(
"--concat",
action="store_true",
help="concat lora instead of merge (The dim(rank) of the output LoRA is the sum of the input dims) / "
+ "マージの代わりに結合する(LoRAのdim(rank)は入力dimの合計になる)",
)
parser.add_argument(
"--shuffle",
action="store_true",
help="shuffle lora weight./ "
+ "LoRAの重みをシャッフルする",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
merge(args)
|