File size: 4,321 Bytes
a3d6c18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
from pathlib import Path
import click
import tqdm
from carvekit.utils.image_utils import ALLOWED_SUFFIXES
from carvekit.utils.pool_utils import batch_generator, thread_pool_processing
from carvekit.web.schemas.config import MLConfig
from carvekit.web.utils.init_utils import init_interface
from carvekit.utils.fs_utils import save_file
@click.command(
"removebg",
help="Performs background removal on specified photos using console interface.",
)
@click.option("-i", required=True, type=str, help="Path to input file or dir")
@click.option("-o", default="none", type=str, help="Path to output file or dir")
@click.option("--pre", default="none", type=str, help="Preprocessing method")
@click.option("--post", default="fba", type=str, help="Postprocessing method.")
@click.option("--net", default="tracer_b7", type=str, help="Segmentation Network")
@click.option(
"--recursive",
default=False,
type=bool,
help="Enables recursive search for images in a folder",
)
@click.option(
"--batch_size",
default=10,
type=int,
help="Batch Size for list of images to be loaded to RAM",
)
@click.option(
"--batch_size_seg",
default=5,
type=int,
help="Batch size for list of images to be processed by segmentation " "network",
)
@click.option(
"--batch_size_mat",
default=1,
type=int,
help="Batch size for list of images to be processed by matting " "network",
)
@click.option(
"--seg_mask_size",
default=640,
type=int,
help="The size of the input image for the segmentation neural network.",
)
@click.option(
"--matting_mask_size",
default=2048,
type=int,
help="The size of the input image for the matting neural network.",
)
@click.option(
"--trimap_dilation",
default=30,
type=int,
help="The size of the offset radius from the object mask in "
"pixels when forming an unknown area",
)
@click.option(
"--trimap_erosion",
default=5,
type=int,
help="The number of iterations of erosion that the object's "
"mask will be subjected to before forming an unknown area",
)
@click.option(
"--trimap_prob_threshold",
default=231,
type=int,
help="Probability threshold at which the prob_filter "
"and prob_as_unknown_area operations will be "
"applied",
)
@click.option("--device", default="cpu", type=str, help="Processing Device.")
@click.option(
"--fp16", default=False, type=bool, help="Enables mixed precision processing."
)
def removebg(
i: str,
o: str,
pre: str,
post: str,
net: str,
recursive: bool,
batch_size: int,
batch_size_seg: int,
batch_size_mat: int,
seg_mask_size: int,
matting_mask_size: int,
device: str,
fp16: bool,
trimap_dilation: int,
trimap_erosion: int,
trimap_prob_threshold: int,
):
out_path = Path(o)
input_path = Path(i)
if input_path.is_dir():
if recursive:
all_images = input_path.rglob("*.*")
else:
all_images = input_path.glob("*.*")
all_images = [
i
for i in all_images
if i.suffix.lower() in ALLOWED_SUFFIXES and "_bg_removed" not in i.name
]
else:
all_images = [input_path]
interface_config = MLConfig(
segmentation_network=net,
preprocessing_method=pre,
postprocessing_method=post,
device=device,
batch_size_seg=batch_size_seg,
batch_size_matting=batch_size_mat,
seg_mask_size=seg_mask_size,
matting_mask_size=matting_mask_size,
fp16=fp16,
trimap_dilation=trimap_dilation,
trimap_erosion=trimap_erosion,
trimap_prob_threshold=trimap_prob_threshold,
)
interface = init_interface(interface_config)
for image_batch in tqdm.tqdm(
batch_generator(all_images, n=batch_size),
total=int(len(all_images) / batch_size),
desc="Removing background",
unit=" image batch",
colour="blue",
):
images_without_background = interface(image_batch) # Remove background
thread_pool_processing(
lambda x: save_file(out_path, image_batch[x], images_without_background[x]),
range((len(image_batch))),
) # Drop images to fs
if __name__ == "__main__":
removebg()
|