File size: 12,901 Bytes
ea5c647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Convert LoRA to different rank approximation (should only be used to go to lower rank)
# This code is based off the extract_lora_from_models.py file which is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo

import argparse
import torch
from safetensors.torch import load_file, save_file, safe_open
from tqdm import tqdm
from library import train_util, model_util
import numpy as np

MIN_SV = 1e-6

# Model save and load functions

def load_state_dict(file_name, dtype):
  if model_util.is_safetensors(file_name):
    sd = load_file(file_name)
    with safe_open(file_name, framework="pt") as f:
      metadata = f.metadata()
  else:
    sd = torch.load(file_name, map_location='cpu')
    metadata = None

  for key in list(sd.keys()):
    if type(sd[key]) == torch.Tensor:
      sd[key] = sd[key].to(dtype)

  return sd, metadata


def save_to_file(file_name, model, state_dict, dtype, metadata):
  if dtype is not None:
    for key in list(state_dict.keys()):
      if type(state_dict[key]) == torch.Tensor:
        state_dict[key] = state_dict[key].to(dtype)

  if model_util.is_safetensors(file_name):
    save_file(model, file_name, metadata)
  else:
    torch.save(model, file_name)


# Indexing functions

def index_sv_cumulative(S, target):
  original_sum = float(torch.sum(S))
  cumulative_sums = torch.cumsum(S, dim=0)/original_sum
  index = int(torch.searchsorted(cumulative_sums, target)) + 1
  index = max(1, min(index, len(S)-1))

  return index


def index_sv_fro(S, target):
  S_squared = S.pow(2)
  s_fro_sq = float(torch.sum(S_squared))
  sum_S_squared = torch.cumsum(S_squared, dim=0)/s_fro_sq
  index = int(torch.searchsorted(sum_S_squared, target**2)) + 1
  index = max(1, min(index, len(S)-1))

  return index


def index_sv_ratio(S, target):
  max_sv = S[0]
  min_sv = max_sv/target
  index = int(torch.sum(S > min_sv).item())
  index = max(1, min(index, len(S)-1))

  return index


# Modified from Kohaku-blueleaf's extract/merge functions
def extract_conv(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1):
    out_size, in_size, kernel_size, _ = weight.size()
    U, S, Vh = torch.linalg.svd(weight.reshape(out_size, -1).to(device))
    
    param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale)
    lora_rank = param_dict["new_rank"]

    U = U[:, :lora_rank]
    S = S[:lora_rank]
    U = U @ torch.diag(S)
    Vh = Vh[:lora_rank, :]

    param_dict["lora_down"] = Vh.reshape(lora_rank, in_size, kernel_size, kernel_size).cpu()
    param_dict["lora_up"] = U.reshape(out_size, lora_rank, 1, 1).cpu()
    del U, S, Vh, weight
    return param_dict


def extract_linear(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1):
    out_size, in_size = weight.size()
    
    U, S, Vh = torch.linalg.svd(weight.to(device))
    
    param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale)
    lora_rank = param_dict["new_rank"]
    
    U = U[:, :lora_rank]
    S = S[:lora_rank]
    U = U @ torch.diag(S)
    Vh = Vh[:lora_rank, :]
    
    param_dict["lora_down"] = Vh.reshape(lora_rank, in_size).cpu()
    param_dict["lora_up"] = U.reshape(out_size, lora_rank).cpu()
    del U, S, Vh, weight
    return param_dict


def merge_conv(lora_down, lora_up, device):
    in_rank, in_size, kernel_size, k_ = lora_down.shape
    out_size, out_rank, _, _ = lora_up.shape
    assert in_rank == out_rank and kernel_size == k_, f"rank {in_rank} {out_rank} or kernel {kernel_size} {k_} mismatch"
    
    lora_down = lora_down.to(device)
    lora_up = lora_up.to(device)

    merged = lora_up.reshape(out_size, -1) @ lora_down.reshape(in_rank, -1)
    weight = merged.reshape(out_size, in_size, kernel_size, kernel_size)
    del lora_up, lora_down
    return weight


def merge_linear(lora_down, lora_up, device):
    in_rank, in_size = lora_down.shape
    out_size, out_rank = lora_up.shape
    assert in_rank == out_rank, f"rank {in_rank} {out_rank} mismatch"
    
    lora_down = lora_down.to(device)
    lora_up = lora_up.to(device)
    
    weight = lora_up @ lora_down
    del lora_up, lora_down
    return weight
  

# Calculate new rank

def rank_resize(S, rank, dynamic_method, dynamic_param, scale=1):
    param_dict = {}

    if dynamic_method=="sv_ratio":
        # Calculate new dim and alpha based off ratio
        new_rank = index_sv_ratio(S, dynamic_param) + 1
        new_alpha = float(scale*new_rank)

    elif dynamic_method=="sv_cumulative":
        # Calculate new dim and alpha based off cumulative sum
        new_rank = index_sv_cumulative(S, dynamic_param) + 1
        new_alpha = float(scale*new_rank)

    elif dynamic_method=="sv_fro":
        # Calculate new dim and alpha based off sqrt sum of squares
        new_rank = index_sv_fro(S, dynamic_param) + 1
        new_alpha = float(scale*new_rank)
    else:
        new_rank = rank
        new_alpha = float(scale*new_rank)

    
    if S[0] <= MIN_SV: # Zero matrix, set dim to 1
        new_rank = 1
        new_alpha = float(scale*new_rank)
    elif new_rank > rank: # cap max rank at rank
        new_rank = rank
        new_alpha = float(scale*new_rank)


    # Calculate resize info
    s_sum = torch.sum(torch.abs(S))
    s_rank = torch.sum(torch.abs(S[:new_rank]))
    
    S_squared = S.pow(2)
    s_fro = torch.sqrt(torch.sum(S_squared))
    s_red_fro = torch.sqrt(torch.sum(S_squared[:new_rank]))
    fro_percent = float(s_red_fro/s_fro)

    param_dict["new_rank"] = new_rank
    param_dict["new_alpha"] = new_alpha
    param_dict["sum_retained"] = (s_rank)/s_sum
    param_dict["fro_retained"] = fro_percent
    param_dict["max_ratio"] = S[0]/S[new_rank - 1]

    return param_dict


def resize_lora_model(lora_sd, new_rank, save_dtype, device, dynamic_method, dynamic_param, verbose):
  network_alpha = None
  network_dim = None
  verbose_str = "\n"
  fro_list = []

  # Extract loaded lora dim and alpha
  for key, value in lora_sd.items():
    if network_alpha is None and 'alpha' in key:
      network_alpha = value
    if network_dim is None and 'lora_down' in key and len(value.size()) == 2:
      network_dim = value.size()[0]
    if network_alpha is not None and network_dim is not None:
      break
    if network_alpha is None:
      network_alpha = network_dim

  scale = network_alpha/network_dim

  if dynamic_method:
    print(f"Dynamically determining new alphas and dims based off {dynamic_method}: {dynamic_param}, max rank is {new_rank}")

  lora_down_weight = None
  lora_up_weight = None

  o_lora_sd = lora_sd.copy()
  block_down_name = None
  block_up_name = None

  with torch.no_grad():
    for key, value in tqdm(lora_sd.items()):
      weight_name = None
      if 'lora_down' in key:
        block_down_name = key.rsplit('.lora_down', 1)[0]
        weight_name = key.rsplit(".", 1)[-1]
        lora_down_weight = value
      else:
        continue

      # find corresponding lora_up and alpha
      block_up_name = block_down_name
      lora_up_weight = lora_sd.get(block_up_name + '.lora_up.' + weight_name, None)
      lora_alpha = lora_sd.get(block_down_name + '.alpha', None)

      weights_loaded = (lora_down_weight is not None and lora_up_weight is not None)

      if weights_loaded:

        conv2d = (len(lora_down_weight.size()) == 4)
        if lora_alpha is None:
          scale = 1.0
        else:
          scale = lora_alpha/lora_down_weight.size()[0]

        if conv2d:
          full_weight_matrix = merge_conv(lora_down_weight, lora_up_weight, device)
          param_dict = extract_conv(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale)
        else:
          full_weight_matrix = merge_linear(lora_down_weight, lora_up_weight, device)
          param_dict = extract_linear(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale)

        if verbose:
          max_ratio = param_dict['max_ratio']
          sum_retained = param_dict['sum_retained']
          fro_retained = param_dict['fro_retained']
          if not np.isnan(fro_retained):
            fro_list.append(float(fro_retained))

          verbose_str+=f"{block_down_name:75} | "
          verbose_str+=f"sum(S) retained: {sum_retained:.1%}, fro retained: {fro_retained:.1%}, max(S) ratio: {max_ratio:0.1f}"

        if verbose and dynamic_method:
          verbose_str+=f", dynamic | dim: {param_dict['new_rank']}, alpha: {param_dict['new_alpha']}\n"
        else:
          verbose_str+=f"\n"

        new_alpha = param_dict['new_alpha']
        o_lora_sd[block_down_name + "." + "lora_down.weight"] = param_dict["lora_down"].to(save_dtype).contiguous()
        o_lora_sd[block_up_name + "." + "lora_up.weight"] = param_dict["lora_up"].to(save_dtype).contiguous()
        o_lora_sd[block_up_name + "." "alpha"] = torch.tensor(param_dict['new_alpha']).to(save_dtype)

        block_down_name = None
        block_up_name = None
        lora_down_weight = None
        lora_up_weight = None
        weights_loaded = False
        del param_dict

  if verbose:
    print(verbose_str)

    print(f"Average Frobenius norm retention: {np.mean(fro_list):.2%} | std: {np.std(fro_list):0.3f}")
  print("resizing complete")
  return o_lora_sd, network_dim, new_alpha


def resize(args):
  if args.save_to is None or not (args.save_to.endswith('.ckpt') or args.save_to.endswith('.pt') or args.save_to.endswith('.pth') or args.save_to.endswith('.safetensors')):
    raise Exception("The --save_to argument must be specified and must be a .ckpt , .pt, .pth or .safetensors file.")

    
  def str_to_dtype(p):
    if p == 'float':
      return torch.float
    if p == 'fp16':
      return torch.float16
    if p == 'bf16':
      return torch.bfloat16
    return None

  if args.dynamic_method and not args.dynamic_param:
    raise Exception("If using dynamic_method, then dynamic_param is required")

  merge_dtype = str_to_dtype('float')  # matmul method above only seems to work in float32
  save_dtype = str_to_dtype(args.save_precision)
  if save_dtype is None:
    save_dtype = merge_dtype

  print("loading Model...")
  lora_sd, metadata = load_state_dict(args.model, merge_dtype)

  print("Resizing Lora...")
  state_dict, old_dim, new_alpha = resize_lora_model(lora_sd, args.new_rank, save_dtype, args.device, args.dynamic_method, args.dynamic_param, args.verbose)

  # update metadata
  if metadata is None:
    metadata = {}

  comment = metadata.get("ss_training_comment", "")

  if not args.dynamic_method:
    metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}; {comment}"
    metadata["ss_network_dim"] = str(args.new_rank)
    metadata["ss_network_alpha"] = str(new_alpha)
  else:
    metadata["ss_training_comment"] = f"Dynamic resize with {args.dynamic_method}: {args.dynamic_param} from {old_dim}; {comment}"
    metadata["ss_network_dim"] = 'Dynamic'
    metadata["ss_network_alpha"] = 'Dynamic'

  model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
  metadata["sshs_model_hash"] = model_hash
  metadata["sshs_legacy_hash"] = legacy_hash

  print(f"saving model to: {args.save_to}")
  save_to_file(args.save_to, state_dict, state_dict, save_dtype, metadata)


def setup_parser() -> argparse.ArgumentParser:
  parser = argparse.ArgumentParser()

  parser.add_argument("--save_precision", type=str, default=None,
                      choices=[None, "float", "fp16", "bf16"], help="precision in saving, float if omitted / 保存時の精度、未指定時はfloat")
  parser.add_argument("--new_rank", type=int, default=4,
                      help="Specify rank of output LoRA / 出力するLoRAのrank (dim)")
  parser.add_argument("--save_to", type=str, default=None,
                      help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
  parser.add_argument("--model", type=str, default=None,
                      help="LoRA model to resize at to new rank: ckpt or safetensors file / 読み込むLoRAモデル、ckptまたはsafetensors")
  parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
  parser.add_argument("--verbose", action="store_true", 
                      help="Display verbose resizing information / rank変更時の詳細情報を出力する")
  parser.add_argument("--dynamic_method", type=str, default=None, choices=[None, "sv_ratio", "sv_fro", "sv_cumulative"],
                      help="Specify dynamic resizing method, --new_rank is used as a hard limit for max rank")
  parser.add_argument("--dynamic_param", type=float, default=None,
                      help="Specify target for dynamic reduction")
       
  return parser


if __name__ == '__main__':
  parser = setup_parser()

  args = parser.parse_args()
  resize(args)