File size: 7,162 Bytes
ea5c647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186


import argparse
import os
import torch
from safetensors.torch import load_file, save_file
import library.model_util as model_util
import lora


def load_state_dict(file_name, dtype):
  if os.path.splitext(file_name)[1] == '.safetensors':
    sd = load_file(file_name)
  else:
    sd = torch.load(file_name, map_location='cpu')
  for key in list(sd.keys()):
    if type(sd[key]) == torch.Tensor:
      sd[key] = sd[key].to(dtype)
  return sd


def save_to_file(file_name, model, state_dict, dtype):
  if dtype is not None:
    for key in list(state_dict.keys()):
      if type(state_dict[key]) == torch.Tensor:
        state_dict[key] = state_dict[key].to(dtype)

  if os.path.splitext(file_name)[1] == '.safetensors':
    save_file(model, file_name)
  else:
    torch.save(model, file_name)


def merge_to_sd_model(text_encoder, unet, models, ratios, merge_dtype):
  text_encoder.to(merge_dtype)
  unet.to(merge_dtype)

  # create module map
  name_to_module = {}
  for i, root_module in enumerate([text_encoder, unet]):
    if i == 0:
      prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER
      target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
    else:
      prefix = lora.LoRANetwork.LORA_PREFIX_UNET
      target_replace_modules = lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE

    for name, module in root_module.named_modules():
      if module.__class__.__name__ in target_replace_modules:
        for child_name, child_module in module.named_modules():
          if child_module.__class__.__name__ == "Linear" or (child_module.__class__.__name__ == "Conv2d" and child_module.kernel_size == (1, 1)):
            lora_name = prefix + '.' + name + '.' + child_name
            lora_name = lora_name.replace('.', '_')
            name_to_module[lora_name] = child_module

  for model, ratio in zip(models, ratios):
    print(f"loading: {model}")
    lora_sd = load_state_dict(model, merge_dtype)

    print(f"merging...")
    for key in lora_sd.keys():
      if "lora_down" in key:
        up_key = key.replace("lora_down", "lora_up")
        alpha_key = key[:key.index("lora_down")] + 'alpha'

        # find original module for this lora
        module_name = '.'.join(key.split('.')[:-2])               # remove trailing ".lora_down.weight"
        if module_name not in name_to_module:
          print(f"no module found for LoRA weight: {key}")
          continue
        module = name_to_module[module_name]
        # print(f"apply {key} to {module}")

        down_weight = lora_sd[key]
        up_weight = lora_sd[up_key]

        dim = down_weight.size()[0]
        alpha = lora_sd.get(alpha_key, dim)
        scale = alpha / dim

        # W <- W + U * D
        weight = module.weight
        if len(weight.size()) == 2:
          # linear
          weight = weight + ratio * (up_weight @ down_weight) * scale
        else:
          # conv2d
          weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * scale

        module.weight = torch.nn.Parameter(weight)


def merge_lora_models(models, ratios, merge_dtype):
  merged_sd = {}

  alpha = None
  dim = None
  for model, ratio in zip(models, ratios):
    print(f"loading: {model}")
    lora_sd = load_state_dict(model, merge_dtype)

    print(f"merging...")
    for key in lora_sd.keys():
      if 'alpha' in key:
        if key in merged_sd:
          assert merged_sd[key] == lora_sd[key], f"alpha mismatch / alphaが異なる場合、現時点ではマージできません"
        else:
          alpha = lora_sd[key].detach().numpy()
          merged_sd[key] = lora_sd[key]
      else:
        if key in merged_sd:
          assert merged_sd[key].size() == lora_sd[key].size(
          ), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
          merged_sd[key] = merged_sd[key] + lora_sd[key] * ratio
        else:
          if "lora_down" in key:
            dim = lora_sd[key].size()[0]
          merged_sd[key] = lora_sd[key] * ratio

  print(f"dim (rank): {dim}, alpha: {alpha}")
  if alpha is None:
    alpha = dim

  return merged_sd, dim, alpha


def merge(args):
  assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"

  def str_to_dtype(p):
    if p == 'float':
      return torch.float
    if p == 'fp16':
      return torch.float16
    if p == 'bf16':
      return torch.bfloat16
    return None

  merge_dtype = str_to_dtype(args.precision)
  save_dtype = str_to_dtype(args.save_precision)
  if save_dtype is None:
    save_dtype = merge_dtype

  if args.sd_model is not None:
    print(f"loading SD model: {args.sd_model}")

    text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.sd_model)

    merge_to_sd_model(text_encoder, unet, args.models, args.ratios, merge_dtype)

    print(f"\nsaving SD model to: {args.save_to}")
    model_util.save_stable_diffusion_checkpoint(args.v2, args.save_to, text_encoder, unet,
                                                args.sd_model, 0, 0, save_dtype, vae)
  else:
    state_dict, _, _ = merge_lora_models(args.models, args.ratios, merge_dtype)

    print(f"\nsaving model to: {args.save_to}")
    save_to_file(args.save_to, state_dict, state_dict, save_dtype)


def setup_parser() -> argparse.ArgumentParser:
  parser = argparse.ArgumentParser()
  parser.add_argument("--v2", action='store_true',
                      help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
  parser.add_argument("--save_precision", type=str, default=None,
                      choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ")
  parser.add_argument("--precision", type=str, default="float",
                      choices=["float", "fp16", "bf16"], help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)")
  parser.add_argument("--sd_model", type=str, default=None,
                      help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする")
  parser.add_argument("--save_to", type=str, default=None,
                      help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
  parser.add_argument("--models", type=str, nargs='*',
                      help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors")
  parser.add_argument("--ratios", type=float, nargs='*',
                      help="ratios for each model / それぞれのLoRAモデルの比率")

  return parser


if __name__ == '__main__':
  parser = setup_parser()

  args = parser.parse_args()
  merge(args)