File size: 209,131 Bytes
ea5c647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 |
# common functions for training
import argparse
import ast
import asyncio
import datetime
import importlib
import json
import pathlib
import re
import shutil
import time
from typing import (
Dict,
List,
NamedTuple,
Optional,
Sequence,
Tuple,
Union,
)
from accelerate import Accelerator, InitProcessGroupKwargs, DistributedDataParallelKwargs
import gc
import glob
import math
import os
import random
import hashlib
import subprocess
from io import BytesIO
import toml
from tqdm import tqdm
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Optimizer
from torchvision import transforms
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
import transformers
from diffusers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION
from diffusers import (
StableDiffusionPipeline,
DDPMScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
DDIMScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
AutoencoderKL,
)
from external.llite.library import custom_train_functions
from external.llite.library.original_unet import UNet2DConditionModel
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import cv2
import safetensors.torch
from external.llite.library.lpw_stable_diffusion import StableDiffusionLongPromptWeightingPipeline
import external.llite.library.model_util as model_util
import external.llite.library.huggingface_util as huggingface_util
import external.llite.library.sai_model_spec as sai_model_spec
# from library.attention_processors import FlashAttnProcessor
# from library.hypernetwork import replace_attentions_for_hypernetwork
from external.llite.library.original_unet import UNet2DConditionModel
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う v2とv2.1はtokenizer仕様は同じ
# checkpointファイル名
EPOCH_STATE_NAME = "{}-{:06d}-state"
EPOCH_FILE_NAME = "{}-{:06d}"
EPOCH_DIFFUSERS_DIR_NAME = "{}-{:06d}"
LAST_STATE_NAME = "{}-state"
DEFAULT_EPOCH_NAME = "epoch"
DEFAULT_LAST_OUTPUT_NAME = "last"
DEFAULT_STEP_NAME = "at"
STEP_STATE_NAME = "{}-step{:08d}-state"
STEP_FILE_NAME = "{}-step{:08d}"
STEP_DIFFUSERS_DIR_NAME = "{}-step{:08d}"
# region dataset
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp", ".bmp", ".PNG", ".JPG", ".JPEG", ".WEBP", ".BMP"]
try:
import pillow_avif
IMAGE_EXTENSIONS.extend([".avif", ".AVIF"])
except:
pass
# JPEG-XL on Linux
try:
from jxlpy import JXLImagePlugin
IMAGE_EXTENSIONS.extend([".jxl", ".JXL"])
except:
pass
# JPEG-XL on Windows
try:
import pillow_jxl
IMAGE_EXTENSIONS.extend([".jxl", ".JXL"])
except:
pass
IMAGE_TRANSFORMS = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
TEXT_ENCODER_OUTPUTS_CACHE_SUFFIX = "_te_outputs.npz"
class ImageInfo:
def __init__(self, image_key: str, num_repeats: int, caption: str, is_reg: bool, absolute_path: str) -> None:
self.image_key: str = image_key
self.num_repeats: int = num_repeats
self.caption: str = caption
self.is_reg: bool = is_reg
self.absolute_path: str = absolute_path
self.image_size: Tuple[int, int] = None
self.resized_size: Tuple[int, int] = None
self.bucket_reso: Tuple[int, int] = None
self.latents: torch.Tensor = None
self.latents_flipped: torch.Tensor = None
self.latents_npz: str = None
self.latents_original_size: Tuple[int, int] = None # original image size, not latents size
self.latents_crop_ltrb: Tuple[int, int] = None # crop left top right bottom in original pixel size, not latents size
self.cond_img_path: str = None
self.image: Optional[Image.Image] = None # optional, original PIL Image
# SDXL, optional
self.text_encoder_outputs_npz: Optional[str] = None
self.text_encoder_outputs1: Optional[torch.Tensor] = None
self.text_encoder_outputs2: Optional[torch.Tensor] = None
self.text_encoder_pool2: Optional[torch.Tensor] = None
class BucketManager:
def __init__(self, no_upscale, max_reso, min_size, max_size, reso_steps) -> None:
if max_size is not None:
if max_reso is not None:
assert max_size >= max_reso[0], "the max_size should be larger than the width of max_reso"
assert max_size >= max_reso[1], "the max_size should be larger than the height of max_reso"
if min_size is not None:
assert max_size >= min_size, "the max_size should be larger than the min_size"
self.no_upscale = no_upscale
if max_reso is None:
self.max_reso = None
self.max_area = None
else:
self.max_reso = max_reso
self.max_area = max_reso[0] * max_reso[1]
self.min_size = min_size
self.max_size = max_size
self.reso_steps = reso_steps
self.resos = []
self.reso_to_id = {}
self.buckets = [] # 前処理時は (image_key, image, original size, crop left/top)、学習時は image_key
def add_image(self, reso, image_or_info):
bucket_id = self.reso_to_id[reso]
self.buckets[bucket_id].append(image_or_info)
def shuffle(self):
for bucket in self.buckets:
random.shuffle(bucket)
def sort(self):
# 解像度順にソートする(表示時、メタデータ格納時の見栄えをよくするためだけ)。bucketsも入れ替えてreso_to_idも振り直す
sorted_resos = self.resos.copy()
sorted_resos.sort()
sorted_buckets = []
sorted_reso_to_id = {}
for i, reso in enumerate(sorted_resos):
bucket_id = self.reso_to_id[reso]
sorted_buckets.append(self.buckets[bucket_id])
sorted_reso_to_id[reso] = i
self.resos = sorted_resos
self.buckets = sorted_buckets
self.reso_to_id = sorted_reso_to_id
def make_buckets(self):
resos = model_util.make_bucket_resolutions(self.max_reso, self.min_size, self.max_size, self.reso_steps)
self.set_predefined_resos(resos)
def set_predefined_resos(self, resos):
# 規定サイズから選ぶ場合の解像度、aspect ratioの情報を格納しておく
self.predefined_resos = resos.copy()
self.predefined_resos_set = set(resos)
self.predefined_aspect_ratios = np.array([w / h for w, h in resos])
def add_if_new_reso(self, reso):
if reso not in self.reso_to_id:
bucket_id = len(self.resos)
self.reso_to_id[reso] = bucket_id
self.resos.append(reso)
self.buckets.append([])
# print(reso, bucket_id, len(self.buckets))
def round_to_steps(self, x):
x = int(x + 0.5)
return x - x % self.reso_steps
def select_bucket(self, image_width, image_height):
aspect_ratio = image_width / image_height
if not self.no_upscale:
# 拡大および縮小を行う
# 同じaspect ratioがあるかもしれないので(fine tuningで、no_upscale=Trueで前処理した場合)、解像度が同じものを優先する
reso = (image_width, image_height)
if reso in self.predefined_resos_set:
pass
else:
ar_errors = self.predefined_aspect_ratios - aspect_ratio
predefined_bucket_id = np.abs(ar_errors).argmin() # 当該解像度以外でaspect ratio errorが最も少ないもの
reso = self.predefined_resos[predefined_bucket_id]
ar_reso = reso[0] / reso[1]
if aspect_ratio > ar_reso: # 横が長い→縦を合わせる
scale = reso[1] / image_height
else:
scale = reso[0] / image_width
resized_size = (int(image_width * scale + 0.5), int(image_height * scale + 0.5))
# print("use predef", image_width, image_height, reso, resized_size)
else:
# 縮小のみを行う
if image_width * image_height > self.max_area:
# 画像が大きすぎるのでアスペクト比を保ったまま縮小することを前提にbucketを決める
resized_width = math.sqrt(self.max_area * aspect_ratio)
resized_height = self.max_area / resized_width
assert abs(resized_width / resized_height - aspect_ratio) < 1e-2, "aspect is illegal"
# リサイズ後の短辺または長辺をreso_steps単位にする:aspect ratioの差が少ないほうを選ぶ
# 元のbucketingと同じロジック
b_width_rounded = self.round_to_steps(resized_width)
b_height_in_wr = self.round_to_steps(b_width_rounded / aspect_ratio)
ar_width_rounded = b_width_rounded / b_height_in_wr
b_height_rounded = self.round_to_steps(resized_height)
b_width_in_hr = self.round_to_steps(b_height_rounded * aspect_ratio)
ar_height_rounded = b_width_in_hr / b_height_rounded
# print(b_width_rounded, b_height_in_wr, ar_width_rounded)
# print(b_width_in_hr, b_height_rounded, ar_height_rounded)
if abs(ar_width_rounded - aspect_ratio) < abs(ar_height_rounded - aspect_ratio):
resized_size = (b_width_rounded, int(b_width_rounded / aspect_ratio + 0.5))
else:
resized_size = (int(b_height_rounded * aspect_ratio + 0.5), b_height_rounded)
# print(resized_size)
else:
resized_size = (image_width, image_height) # リサイズは不要
# 画像のサイズ未満をbucketのサイズとする(paddingせずにcroppingする)
bucket_width = resized_size[0] - resized_size[0] % self.reso_steps
bucket_height = resized_size[1] - resized_size[1] % self.reso_steps
# print("use arbitrary", image_width, image_height, resized_size, bucket_width, bucket_height)
reso = (bucket_width, bucket_height)
self.add_if_new_reso(reso)
ar_error = (reso[0] / reso[1]) - aspect_ratio
return reso, resized_size, ar_error
@staticmethod
def get_crop_ltrb(bucket_reso: Tuple[int, int], image_size: Tuple[int, int]):
# Stability AIの前処理に合わせてcrop left/topを計算する。crop rightはflipのaugmentationのために求める
# Calculate crop left/top according to the preprocessing of Stability AI. Crop right is calculated for flip augmentation.
bucket_ar = bucket_reso[0] / bucket_reso[1]
image_ar = image_size[0] / image_size[1]
if bucket_ar > image_ar:
# bucketのほうが横長→縦を合わせる
resized_width = bucket_reso[1] * image_ar
resized_height = bucket_reso[1]
else:
resized_width = bucket_reso[0]
resized_height = bucket_reso[0] / image_ar
crop_left = (bucket_reso[0] - resized_width) // 2
crop_top = (bucket_reso[1] - resized_height) // 2
crop_right = crop_left + resized_width
crop_bottom = crop_top + resized_height
return crop_left, crop_top, crop_right, crop_bottom
class BucketBatchIndex(NamedTuple):
bucket_index: int
bucket_batch_size: int
batch_index: int
class AugHelper:
# albumentationsへの依存をなくしたがとりあえず同じinterfaceを持たせる
def __init__(self):
pass
def color_aug(self, image: np.ndarray):
# self.color_aug_method = albu.OneOf(
# [
# albu.HueSaturationValue(8, 0, 0, p=0.5),
# albu.RandomGamma((95, 105), p=0.5),
# ],
# p=0.33,
# )
hue_shift_limit = 8
# remove dependency to albumentations
if random.random() <= 0.33:
if random.random() > 0.5:
# hue shift
hsv_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
hue_shift = random.uniform(-hue_shift_limit, hue_shift_limit)
if hue_shift < 0:
hue_shift = 180 + hue_shift
hsv_img[:, :, 0] = (hsv_img[:, :, 0] + hue_shift) % 180
image = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
else:
# random gamma
gamma = random.uniform(0.95, 1.05)
image = np.clip(image**gamma, 0, 255).astype(np.uint8)
return {"image": image}
def get_augmentor(self, use_color_aug: bool): # -> Optional[Callable[[np.ndarray], Dict[str, np.ndarray]]]:
return self.color_aug if use_color_aug else None
class BaseSubset:
def __init__(
self,
image_dir: Optional[str],
num_repeats: int,
shuffle_caption: bool,
caption_separator: str,
keep_tokens: int,
keep_tokens_separator: str,
color_aug: bool,
flip_aug: bool,
face_crop_aug_range: Optional[Tuple[float, float]],
random_crop: bool,
caption_dropout_rate: float,
caption_dropout_every_n_epochs: int,
caption_tag_dropout_rate: float,
caption_prefix: Optional[str],
caption_suffix: Optional[str],
token_warmup_min: int,
token_warmup_step: Union[float, int],
) -> None:
self.image_dir = image_dir
self.num_repeats = num_repeats
self.shuffle_caption = shuffle_caption
self.caption_separator = caption_separator
self.keep_tokens = keep_tokens
self.keep_tokens_separator = keep_tokens_separator
self.color_aug = color_aug
self.flip_aug = flip_aug
self.face_crop_aug_range = face_crop_aug_range
self.random_crop = random_crop
self.caption_dropout_rate = caption_dropout_rate
self.caption_dropout_every_n_epochs = caption_dropout_every_n_epochs
self.caption_tag_dropout_rate = caption_tag_dropout_rate
self.caption_prefix = caption_prefix
self.caption_suffix = caption_suffix
self.token_warmup_min = token_warmup_min # step=0におけるタグの数
self.token_warmup_step = token_warmup_step # N(N<1ならN*max_train_steps)ステップ目でタグの数が最大になる
self.img_count = 0
class DreamBoothSubset(BaseSubset):
def __init__(
self,
image_dir: str,
is_reg: bool,
class_tokens: Optional[str],
caption_extension: str,
num_repeats,
shuffle_caption,
caption_separator: str,
keep_tokens,
keep_tokens_separator,
color_aug,
flip_aug,
face_crop_aug_range,
random_crop,
caption_dropout_rate,
caption_dropout_every_n_epochs,
caption_tag_dropout_rate,
caption_prefix,
caption_suffix,
token_warmup_min,
token_warmup_step,
) -> None:
assert image_dir is not None, "image_dir must be specified / image_dirは指定が必須です"
super().__init__(
image_dir,
num_repeats,
shuffle_caption,
caption_separator,
keep_tokens,
keep_tokens_separator,
color_aug,
flip_aug,
face_crop_aug_range,
random_crop,
caption_dropout_rate,
caption_dropout_every_n_epochs,
caption_tag_dropout_rate,
caption_prefix,
caption_suffix,
token_warmup_min,
token_warmup_step,
)
self.is_reg = is_reg
self.class_tokens = class_tokens
self.caption_extension = caption_extension
if self.caption_extension and not self.caption_extension.startswith("."):
self.caption_extension = "." + self.caption_extension
def __eq__(self, other) -> bool:
if not isinstance(other, DreamBoothSubset):
return NotImplemented
return self.image_dir == other.image_dir
class FineTuningSubset(BaseSubset):
def __init__(
self,
image_dir,
metadata_file: str,
num_repeats,
shuffle_caption,
caption_separator,
keep_tokens,
keep_tokens_separator,
color_aug,
flip_aug,
face_crop_aug_range,
random_crop,
caption_dropout_rate,
caption_dropout_every_n_epochs,
caption_tag_dropout_rate,
caption_prefix,
caption_suffix,
token_warmup_min,
token_warmup_step,
) -> None:
assert metadata_file is not None, "metadata_file must be specified / metadata_fileは指定が必須です"
super().__init__(
image_dir,
num_repeats,
shuffle_caption,
caption_separator,
keep_tokens,
keep_tokens_separator,
color_aug,
flip_aug,
face_crop_aug_range,
random_crop,
caption_dropout_rate,
caption_dropout_every_n_epochs,
caption_tag_dropout_rate,
caption_prefix,
caption_suffix,
token_warmup_min,
token_warmup_step,
)
self.metadata_file = metadata_file
def __eq__(self, other) -> bool:
if not isinstance(other, FineTuningSubset):
return NotImplemented
return self.metadata_file == other.metadata_file
class ControlNetSubset(BaseSubset):
def __init__(
self,
image_dir: str,
conditioning_data_dir: str,
caption_extension: str,
num_repeats,
shuffle_caption,
caption_separator,
keep_tokens,
keep_tokens_separator,
color_aug,
flip_aug,
face_crop_aug_range,
random_crop,
caption_dropout_rate,
caption_dropout_every_n_epochs,
caption_tag_dropout_rate,
caption_prefix,
caption_suffix,
token_warmup_min,
token_warmup_step,
) -> None:
assert image_dir is not None, "image_dir must be specified / image_dirは指定が必須です"
super().__init__(
image_dir,
num_repeats,
shuffle_caption,
caption_separator,
keep_tokens,
keep_tokens_separator,
color_aug,
flip_aug,
face_crop_aug_range,
random_crop,
caption_dropout_rate,
caption_dropout_every_n_epochs,
caption_tag_dropout_rate,
caption_prefix,
caption_suffix,
token_warmup_min,
token_warmup_step,
)
self.conditioning_data_dir = conditioning_data_dir
self.caption_extension = caption_extension
if self.caption_extension and not self.caption_extension.startswith("."):
self.caption_extension = "." + self.caption_extension
def __eq__(self, other) -> bool:
if not isinstance(other, ControlNetSubset):
return NotImplemented
return self.image_dir == other.image_dir and self.conditioning_data_dir == other.conditioning_data_dir
class BaseDataset(torch.utils.data.Dataset):
def __init__(
self,
tokenizer: Union[CLIPTokenizer, List[CLIPTokenizer]],
max_token_length: int,
resolution: Optional[Tuple[int, int]],
debug_dataset: bool,
) -> None:
super().__init__()
self.tokenizers = tokenizer if isinstance(tokenizer, list) else [tokenizer]
self.max_token_length = max_token_length
# width/height is used when enable_bucket==False
self.width, self.height = (None, None) if resolution is None else resolution
self.debug_dataset = debug_dataset
self.subsets: List[Union[DreamBoothSubset, FineTuningSubset]] = []
self.token_padding_disabled = False
self.tag_frequency = {}
self.XTI_layers = None
self.token_strings = None
self.enable_bucket = False
self.bucket_manager: BucketManager = None # not initialized
self.min_bucket_reso = None
self.max_bucket_reso = None
self.bucket_reso_steps = None
self.bucket_no_upscale = None
self.bucket_info = None # for metadata
self.tokenizer_max_length = self.tokenizers[0].model_max_length if max_token_length is None else max_token_length + 2
self.current_epoch: int = 0 # インスタンスがepochごとに新しく作られるようなので外側から渡さないとダメ
self.current_step: int = 0
self.max_train_steps: int = 0
self.seed: int = 0
# augmentation
self.aug_helper = AugHelper()
self.image_transforms = IMAGE_TRANSFORMS
self.image_data: Dict[str, ImageInfo] = {}
self.image_to_subset: Dict[str, Union[DreamBoothSubset, FineTuningSubset]] = {}
self.replacements = {}
# caching
self.caching_mode = None # None, 'latents', 'text'
def set_seed(self, seed):
self.seed = seed
def set_caching_mode(self, mode):
self.caching_mode = mode
def set_current_epoch(self, epoch):
if not self.current_epoch == epoch: # epochが切り替わったらバケツをシャッフルする
self.shuffle_buckets()
self.current_epoch = epoch
def set_current_step(self, step):
self.current_step = step
def set_max_train_steps(self, max_train_steps):
self.max_train_steps = max_train_steps
def set_tag_frequency(self, dir_name, captions):
frequency_for_dir = self.tag_frequency.get(dir_name, {})
self.tag_frequency[dir_name] = frequency_for_dir
for caption in captions:
for tag in caption.split(","):
tag = tag.strip()
if tag:
tag = tag.lower()
frequency = frequency_for_dir.get(tag, 0)
frequency_for_dir[tag] = frequency + 1
def disable_token_padding(self):
self.token_padding_disabled = True
def enable_XTI(self, layers=None, token_strings=None):
self.XTI_layers = layers
self.token_strings = token_strings
def add_replacement(self, str_from, str_to):
self.replacements[str_from] = str_to
def process_caption(self, subset: BaseSubset, caption):
# caption に prefix/suffix を付ける
if subset.caption_prefix:
caption = subset.caption_prefix + " " + caption
if subset.caption_suffix:
caption = caption + " " + subset.caption_suffix
# dropoutの決定:tag dropがこのメソッド内にあるのでここで行うのが良い
is_drop_out = subset.caption_dropout_rate > 0 and random.random() < subset.caption_dropout_rate
is_drop_out = (
is_drop_out
or subset.caption_dropout_every_n_epochs > 0
and self.current_epoch % subset.caption_dropout_every_n_epochs == 0
)
if is_drop_out:
caption = ""
else:
if subset.shuffle_caption or subset.token_warmup_step > 0 or subset.caption_tag_dropout_rate > 0:
fixed_tokens = []
flex_tokens = []
if (
hasattr(subset, "keep_tokens_separator")
and subset.keep_tokens_separator
and subset.keep_tokens_separator in caption
):
fixed_part, flex_part = caption.split(subset.keep_tokens_separator, 1)
fixed_tokens = [t.strip() for t in fixed_part.split(subset.caption_separator) if t.strip()]
flex_tokens = [t.strip() for t in flex_part.split(subset.caption_separator) if t.strip()]
else:
tokens = [t.strip() for t in caption.strip().split(subset.caption_separator)]
flex_tokens = tokens[:]
if subset.keep_tokens > 0:
fixed_tokens = flex_tokens[: subset.keep_tokens]
flex_tokens = tokens[subset.keep_tokens :]
if subset.token_warmup_step < 1: # 初回に上書きする
subset.token_warmup_step = math.floor(subset.token_warmup_step * self.max_train_steps)
if subset.token_warmup_step and self.current_step < subset.token_warmup_step:
tokens_len = (
math.floor(
(self.current_step) * ((len(flex_tokens) - subset.token_warmup_min) / (subset.token_warmup_step))
)
+ subset.token_warmup_min
)
flex_tokens = flex_tokens[:tokens_len]
def dropout_tags(tokens):
if subset.caption_tag_dropout_rate <= 0:
return tokens
l = []
for token in tokens:
if random.random() >= subset.caption_tag_dropout_rate:
l.append(token)
return l
if subset.shuffle_caption:
random.shuffle(flex_tokens)
flex_tokens = dropout_tags(flex_tokens)
caption = ", ".join(fixed_tokens + flex_tokens)
# textual inversion対応
for str_from, str_to in self.replacements.items():
if str_from == "":
# replace all
if type(str_to) == list:
caption = random.choice(str_to)
else:
caption = str_to
else:
caption = caption.replace(str_from, str_to)
return caption
def get_input_ids(self, caption, tokenizer=None):
if tokenizer is None:
tokenizer = self.tokenizers[0]
input_ids = tokenizer(
caption, padding="max_length", truncation=True, max_length=self.tokenizer_max_length, return_tensors="pt"
).input_ids
if self.tokenizer_max_length > tokenizer.model_max_length:
input_ids = input_ids.squeeze(0)
iids_list = []
if tokenizer.pad_token_id == tokenizer.eos_token_id:
# v1
# 77以上の時は "<BOS> .... <EOS> <EOS> <EOS>" でトータル227とかになっているので、"<BOS>...<EOS>"の三連に変換する
# 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に
for i in range(
1, self.tokenizer_max_length - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2
): # (1, 152, 75)
ids_chunk = (
input_ids[0].unsqueeze(0),
input_ids[i : i + tokenizer.model_max_length - 2],
input_ids[-1].unsqueeze(0),
)
ids_chunk = torch.cat(ids_chunk)
iids_list.append(ids_chunk)
else:
# v2 or SDXL
# 77以上の時は "<BOS> .... <EOS> <PAD> <PAD>..." でトータル227とかになっているので、"<BOS>...<EOS> <PAD> <PAD> ..."の三連に変換する
for i in range(1, self.tokenizer_max_length - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2):
ids_chunk = (
input_ids[0].unsqueeze(0), # BOS
input_ids[i : i + tokenizer.model_max_length - 2],
input_ids[-1].unsqueeze(0),
) # PAD or EOS
ids_chunk = torch.cat(ids_chunk)
# 末尾が <EOS> <PAD> または <PAD> <PAD> の場合は、何もしなくてよい
# 末尾が x <PAD/EOS> の場合は末尾を <EOS> に変える(x <EOS> なら結果的に変化なし)
if ids_chunk[-2] != tokenizer.eos_token_id and ids_chunk[-2] != tokenizer.pad_token_id:
ids_chunk[-1] = tokenizer.eos_token_id
# 先頭が <BOS> <PAD> ... の場合は <BOS> <EOS> <PAD> ... に変える
if ids_chunk[1] == tokenizer.pad_token_id:
ids_chunk[1] = tokenizer.eos_token_id
iids_list.append(ids_chunk)
input_ids = torch.stack(iids_list) # 3,77
return input_ids
def register_image(self, info: ImageInfo, subset: BaseSubset):
self.image_data[info.image_key] = info
self.image_to_subset[info.image_key] = subset
def make_buckets(self):
"""
bucketingを行わない場合も呼び出し必須(ひとつだけbucketを作る)
min_size and max_size are ignored when enable_bucket is False
"""
print("loading image sizes.")
for info in tqdm(self.image_data.values()):
if info.image_size is None:
info.image_size = self.get_image_size(info.absolute_path)
if self.enable_bucket:
print("make buckets")
else:
print("prepare dataset")
# bucketを作成し、画像をbucketに振り分ける
if self.enable_bucket:
if self.bucket_manager is None: # fine tuningの場合でmetadataに定義がある場合は、すでに初期化済み
self.bucket_manager = BucketManager(
self.bucket_no_upscale,
(self.width, self.height),
self.min_bucket_reso,
self.max_bucket_reso,
self.bucket_reso_steps,
)
if not self.bucket_no_upscale:
self.bucket_manager.make_buckets()
else:
print(
"min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is set, because bucket reso is defined by image size automatically / bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視されます"
)
img_ar_errors = []
for image_info in self.image_data.values():
image_width, image_height = image_info.image_size
image_info.bucket_reso, image_info.resized_size, ar_error = self.bucket_manager.select_bucket(
image_width, image_height
)
# print(image_info.image_key, image_info.bucket_reso)
img_ar_errors.append(abs(ar_error))
self.bucket_manager.sort()
else:
self.bucket_manager = BucketManager(False, (self.width, self.height), None, None, None)
self.bucket_manager.set_predefined_resos([(self.width, self.height)]) # ひとつの固定サイズbucketのみ
for image_info in self.image_data.values():
image_width, image_height = image_info.image_size
image_info.bucket_reso, image_info.resized_size, _ = self.bucket_manager.select_bucket(image_width, image_height)
for image_info in self.image_data.values():
for _ in range(image_info.num_repeats):
self.bucket_manager.add_image(image_info.bucket_reso, image_info.image_key)
# bucket情報を表示、格納する
if self.enable_bucket:
self.bucket_info = {"buckets": {}}
print("number of images (including repeats) / 各bucketの画像枚数(繰り返し回数を含む)")
for i, (reso, bucket) in enumerate(zip(self.bucket_manager.resos, self.bucket_manager.buckets)):
count = len(bucket)
if count > 0:
self.bucket_info["buckets"][i] = {"resolution": reso, "count": len(bucket)}
print(f"bucket {i}: resolution {reso}, count: {len(bucket)}")
img_ar_errors = np.array(img_ar_errors)
mean_img_ar_error = np.mean(np.abs(img_ar_errors))
self.bucket_info["mean_img_ar_error"] = mean_img_ar_error
print(f"mean ar error (without repeats): {mean_img_ar_error}")
# データ参照用indexを作る。このindexはdatasetのshuffleに用いられる
self.buckets_indices: List(BucketBatchIndex) = []
for bucket_index, bucket in enumerate(self.bucket_manager.buckets):
batch_count = int(math.ceil(len(bucket) / self.batch_size))
for batch_index in range(batch_count):
self.buckets_indices.append(BucketBatchIndex(bucket_index, self.batch_size, batch_index))
# ↓以下はbucketごとのbatch件数があまりにも増えて混乱を招くので元に戻す
# 学習時はステップ数がランダムなので、同一画像が同一batch内にあってもそれほど悪影響はないであろう、と考えられる
#
# # bucketが細分化されることにより、ひとつのbucketに一種類の画像のみというケースが増え、つまりそれは
# # ひとつのbatchが同じ画像で占められることになるので、さすがに良くないであろう
# # そのためバッチサイズを画像種類までに制限する
# # ただそれでも同一画像が同一バッチに含まれる可能性はあるので、繰り返し回数が少ないほうがshuffleの品質は良くなることは間違いない?
# # TO DO 正則化画像をepochまたがりで利用する仕組み
# num_of_image_types = len(set(bucket))
# bucket_batch_size = min(self.batch_size, num_of_image_types)
# batch_count = int(math.ceil(len(bucket) / bucket_batch_size))
# # print(bucket_index, num_of_image_types, bucket_batch_size, batch_count)
# for batch_index in range(batch_count):
# self.buckets_indices.append(BucketBatchIndex(bucket_index, bucket_batch_size, batch_index))
# ↑ここまで
self.shuffle_buckets()
self._length = len(self.buckets_indices)
def shuffle_buckets(self):
# set random seed for this epoch
random.seed(self.seed + self.current_epoch)
random.shuffle(self.buckets_indices)
self.bucket_manager.shuffle()
def verify_bucket_reso_steps(self, min_steps: int):
assert self.bucket_reso_steps is None or self.bucket_reso_steps % min_steps == 0, (
f"bucket_reso_steps is {self.bucket_reso_steps}. it must be divisible by {min_steps}.\n"
+ f"bucket_reso_stepsが{self.bucket_reso_steps}です。{min_steps}で割り切れる必要があります"
)
def is_latent_cacheable(self):
return all([not subset.color_aug and not subset.random_crop for subset in self.subsets])
def is_text_encoder_output_cacheable(self):
return all(
[
not (
subset.caption_dropout_rate > 0
or subset.shuffle_caption
or subset.token_warmup_step > 0
or subset.caption_tag_dropout_rate > 0
)
for subset in self.subsets
]
)
def cache_latents(self, vae, vae_batch_size=1, cache_to_disk=False, is_main_process=True):
# マルチGPUには対応していないので、そちらはtools/cache_latents.pyを使うこと
print("caching latents.")
image_infos = list(self.image_data.values())
# sort by resolution
image_infos.sort(key=lambda info: info.bucket_reso[0] * info.bucket_reso[1])
# split by resolution
batches = []
batch = []
print("checking cache validity...")
for info in tqdm(image_infos):
subset = self.image_to_subset[info.image_key]
if info.latents_npz is not None: # fine tuning dataset
continue
# check disk cache exists and size of latents
if cache_to_disk:
info.latents_npz = os.path.splitext(info.absolute_path)[0] + ".npz"
if not is_main_process: # store to info only
continue
cache_available = is_disk_cached_latents_is_expected(info.bucket_reso, info.latents_npz, subset.flip_aug)
if cache_available: # do not add to batch
continue
# if last member of batch has different resolution, flush the batch
if len(batch) > 0 and batch[-1].bucket_reso != info.bucket_reso:
batches.append(batch)
batch = []
batch.append(info)
# if number of data in batch is enough, flush the batch
if len(batch) >= vae_batch_size:
batches.append(batch)
batch = []
if len(batch) > 0:
batches.append(batch)
if cache_to_disk and not is_main_process: # if cache to disk, don't cache latents in non-main process, set to info only
return
# iterate batches: batch doesn't have image, image will be loaded in cache_batch_latents and discarded
print("caching latents...")
for batch in tqdm(batches, smoothing=1, total=len(batches)):
cache_batch_latents(vae, cache_to_disk, batch, subset.flip_aug, subset.random_crop)
# weight_dtypeを指定するとText Encoderそのもの、およひ出力がweight_dtypeになる
# SDXLでのみ有効だが、datasetのメソッドとする必要があるので、sdxl_train_util.pyではなくこちらに実装する
# SD1/2に対応するにはv2のフラグを持つ必要があるので後回し
def cache_text_encoder_outputs(
self, tokenizers, text_encoders, device, weight_dtype, cache_to_disk=False, is_main_process=True
):
assert len(tokenizers) == 2, "only support SDXL"
# latentsのキャッシュと同様に、ディスクへのキャッシュに対応する
# またマルチGPUには対応していないので、そちらはtools/cache_latents.pyを使うこと
print("caching text encoder outputs.")
image_infos = list(self.image_data.values())
print("checking cache existence...")
image_infos_to_cache = []
for info in tqdm(image_infos):
# subset = self.image_to_subset[info.image_key]
if cache_to_disk:
te_out_npz = os.path.splitext(info.absolute_path)[0] + TEXT_ENCODER_OUTPUTS_CACHE_SUFFIX
info.text_encoder_outputs_npz = te_out_npz
if not is_main_process: # store to info only
continue
if os.path.exists(te_out_npz):
continue
image_infos_to_cache.append(info)
if cache_to_disk and not is_main_process: # if cache to disk, don't cache latents in non-main process, set to info only
return
# prepare tokenizers and text encoders
for text_encoder in text_encoders:
text_encoder.to(device)
if weight_dtype is not None:
text_encoder.to(dtype=weight_dtype)
# create batch
batch = []
batches = []
for info in image_infos_to_cache:
input_ids1 = self.get_input_ids(info.caption, tokenizers[0])
input_ids2 = self.get_input_ids(info.caption, tokenizers[1])
batch.append((info, input_ids1, input_ids2))
if len(batch) >= self.batch_size:
batches.append(batch)
batch = []
if len(batch) > 0:
batches.append(batch)
# iterate batches: call text encoder and cache outputs for memory or disk
print("caching text encoder outputs...")
for batch in tqdm(batches):
infos, input_ids1, input_ids2 = zip(*batch)
input_ids1 = torch.stack(input_ids1, dim=0)
input_ids2 = torch.stack(input_ids2, dim=0)
cache_batch_text_encoder_outputs(
infos, tokenizers, text_encoders, self.max_token_length, cache_to_disk, input_ids1, input_ids2, weight_dtype
)
def get_image_size(self, image_path):
image = Image.open(image_path)
return image.size
def load_image_with_face_info(self, subset: BaseSubset, image_path: str):
img = load_image(image_path)
face_cx = face_cy = face_w = face_h = 0
if subset.face_crop_aug_range is not None:
tokens = os.path.splitext(os.path.basename(image_path))[0].split("_")
if len(tokens) >= 5:
face_cx = int(tokens[-4])
face_cy = int(tokens[-3])
face_w = int(tokens[-2])
face_h = int(tokens[-1])
return img, face_cx, face_cy, face_w, face_h
# いい感じに切り出す
def crop_target(self, subset: BaseSubset, image, face_cx, face_cy, face_w, face_h):
height, width = image.shape[0:2]
if height == self.height and width == self.width:
return image
# 画像サイズはsizeより大きいのでリサイズする
face_size = max(face_w, face_h)
size = min(self.height, self.width) # 短いほう
min_scale = max(self.height / height, self.width / width) # 画像がモデル入力サイズぴったりになる倍率(最小の倍率)
min_scale = min(1.0, max(min_scale, size / (face_size * subset.face_crop_aug_range[1]))) # 指定した顔最小サイズ
max_scale = min(1.0, max(min_scale, size / (face_size * subset.face_crop_aug_range[0]))) # 指定した顔最大サイズ
if min_scale >= max_scale: # range指定がmin==max
scale = min_scale
else:
scale = random.uniform(min_scale, max_scale)
nh = int(height * scale + 0.5)
nw = int(width * scale + 0.5)
assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}"
image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA)
face_cx = int(face_cx * scale + 0.5)
face_cy = int(face_cy * scale + 0.5)
height, width = nh, nw
# 顔を中心として448*640とかへ切り出す
for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))):
p1 = face_p - target_size // 2 # 顔を中心に持ってくるための切り出し位置
if subset.random_crop:
# 背景も含めるために顔を中心に置く確率を高めつつずらす
range = max(length - face_p, face_p) # 画像の端から顔中心までの距離の長いほう
p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range # -range ~ +range までのいい感じの乱数
else:
# range指定があるときのみ、すこしだけランダムに(わりと適当)
if subset.face_crop_aug_range[0] != subset.face_crop_aug_range[1]:
if face_size > size // 10 and face_size >= 40:
p1 = p1 + random.randint(-face_size // 20, +face_size // 20)
p1 = max(0, min(p1, length - target_size))
if axis == 0:
image = image[p1 : p1 + target_size, :]
else:
image = image[:, p1 : p1 + target_size]
return image
def __len__(self):
return self._length
def __getitem__(self, index):
bucket = self.bucket_manager.buckets[self.buckets_indices[index].bucket_index]
bucket_batch_size = self.buckets_indices[index].bucket_batch_size
image_index = self.buckets_indices[index].batch_index * bucket_batch_size
if self.caching_mode is not None: # return batch for latents/text encoder outputs caching
return self.get_item_for_caching(bucket, bucket_batch_size, image_index)
loss_weights = []
captions = []
input_ids_list = []
input_ids2_list = []
latents_list = []
images = []
original_sizes_hw = []
crop_top_lefts = []
target_sizes_hw = []
flippeds = [] # 変数名が微妙
text_encoder_outputs1_list = []
text_encoder_outputs2_list = []
text_encoder_pool2_list = []
for image_key in bucket[image_index : image_index + bucket_batch_size]:
image_info = self.image_data[image_key]
subset = self.image_to_subset[image_key]
loss_weights.append(self.prior_loss_weight if image_info.is_reg else 1.0)
flipped = subset.flip_aug and random.random() < 0.5 # not flipped or flipped with 50% chance
# image/latentsを処理する
if image_info.latents is not None: # cache_latents=Trueの場合
original_size = image_info.latents_original_size
crop_ltrb = image_info.latents_crop_ltrb # calc values later if flipped
if not flipped:
latents = image_info.latents
else:
latents = image_info.latents_flipped
image = None
elif image_info.latents_npz is not None: # FineTuningDatasetまたはcache_latents_to_disk=Trueの場合
latents, original_size, crop_ltrb, flipped_latents = load_latents_from_disk(image_info.latents_npz)
if flipped:
latents = flipped_latents
del flipped_latents
latents = torch.FloatTensor(latents)
image = None
else:
# 画像を読み込み、必要ならcropする
img, face_cx, face_cy, face_w, face_h = self.load_image_with_face_info(subset, image_info.absolute_path)
im_h, im_w = img.shape[0:2]
if self.enable_bucket:
img, original_size, crop_ltrb = trim_and_resize_if_required(
subset.random_crop, img, image_info.bucket_reso, image_info.resized_size
)
else:
if face_cx > 0: # 顔位置情報あり
img = self.crop_target(subset, img, face_cx, face_cy, face_w, face_h)
elif im_h > self.height or im_w > self.width:
assert (
subset.random_crop
), f"image too large, but cropping and bucketing are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_crop、またはbucketを有効にしてください: {image_info.absolute_path}"
if im_h > self.height:
p = random.randint(0, im_h - self.height)
img = img[p : p + self.height]
if im_w > self.width:
p = random.randint(0, im_w - self.width)
img = img[:, p : p + self.width]
im_h, im_w = img.shape[0:2]
assert (
im_h == self.height and im_w == self.width
), f"image size is small / 画像サイズが小さいようです: {image_info.absolute_path}"
original_size = [im_w, im_h]
crop_ltrb = (0, 0, 0, 0)
# augmentation
aug = self.aug_helper.get_augmentor(subset.color_aug)
if aug is not None:
img = aug(image=img)["image"]
if flipped:
img = img[:, ::-1, :].copy() # copy to avoid negative stride problem
latents = None
image = self.image_transforms(img) # -1.0~1.0のtorch.Tensorになる
images.append(image)
latents_list.append(latents)
target_size = (image.shape[2], image.shape[1]) if image is not None else (latents.shape[2] * 8, latents.shape[1] * 8)
if not flipped:
crop_left_top = (crop_ltrb[0], crop_ltrb[1])
else:
# crop_ltrb[2] is right, so target_size[0] - crop_ltrb[2] is left in flipped image
crop_left_top = (target_size[0] - crop_ltrb[2], crop_ltrb[1])
original_sizes_hw.append((int(original_size[1]), int(original_size[0])))
crop_top_lefts.append((int(crop_left_top[1]), int(crop_left_top[0])))
target_sizes_hw.append((int(target_size[1]), int(target_size[0])))
flippeds.append(flipped)
# captionとtext encoder outputを処理する
caption = image_info.caption # default
if image_info.text_encoder_outputs1 is not None:
text_encoder_outputs1_list.append(image_info.text_encoder_outputs1)
text_encoder_outputs2_list.append(image_info.text_encoder_outputs2)
text_encoder_pool2_list.append(image_info.text_encoder_pool2)
captions.append(caption)
elif image_info.text_encoder_outputs_npz is not None:
text_encoder_outputs1, text_encoder_outputs2, text_encoder_pool2 = load_text_encoder_outputs_from_disk(
image_info.text_encoder_outputs_npz
)
text_encoder_outputs1_list.append(text_encoder_outputs1)
text_encoder_outputs2_list.append(text_encoder_outputs2)
text_encoder_pool2_list.append(text_encoder_pool2)
captions.append(caption)
else:
caption = self.process_caption(subset, image_info.caption)
if self.XTI_layers:
caption_layer = []
for layer in self.XTI_layers:
token_strings_from = " ".join(self.token_strings)
token_strings_to = " ".join([f"{x}_{layer}" for x in self.token_strings])
caption_ = caption.replace(token_strings_from, token_strings_to)
caption_layer.append(caption_)
captions.append(caption_layer)
else:
captions.append(caption)
if not self.token_padding_disabled: # this option might be omitted in future
if self.XTI_layers:
token_caption = self.get_input_ids(caption_layer, self.tokenizers[0])
else:
token_caption = self.get_input_ids(caption, self.tokenizers[0])
input_ids_list.append(token_caption)
if len(self.tokenizers) > 1:
if self.XTI_layers:
token_caption2 = self.get_input_ids(caption_layer, self.tokenizers[1])
else:
token_caption2 = self.get_input_ids(caption, self.tokenizers[1])
input_ids2_list.append(token_caption2)
example = {}
example["loss_weights"] = torch.FloatTensor(loss_weights)
if len(text_encoder_outputs1_list) == 0:
if self.token_padding_disabled:
# padding=True means pad in the batch
example["input_ids"] = self.tokenizer[0](captions, padding=True, truncation=True, return_tensors="pt").input_ids
if len(self.tokenizers) > 1:
example["input_ids2"] = self.tokenizer[1](
captions, padding=True, truncation=True, return_tensors="pt"
).input_ids
else:
example["input_ids2"] = None
else:
example["input_ids"] = torch.stack(input_ids_list)
example["input_ids2"] = torch.stack(input_ids2_list) if len(self.tokenizers) > 1 else None
example["text_encoder_outputs1_list"] = None
example["text_encoder_outputs2_list"] = None
example["text_encoder_pool2_list"] = None
else:
example["input_ids"] = None
example["input_ids2"] = None
# # for assertion
# example["input_ids"] = torch.stack([self.get_input_ids(cap, self.tokenizers[0]) for cap in captions])
# example["input_ids2"] = torch.stack([self.get_input_ids(cap, self.tokenizers[1]) for cap in captions])
example["text_encoder_outputs1_list"] = torch.stack(text_encoder_outputs1_list)
example["text_encoder_outputs2_list"] = torch.stack(text_encoder_outputs2_list)
example["text_encoder_pool2_list"] = torch.stack(text_encoder_pool2_list)
if images[0] is not None:
images = torch.stack(images)
images = images.to(memory_format=torch.contiguous_format).float()
else:
images = None
example["images"] = images
example["latents"] = torch.stack(latents_list) if latents_list[0] is not None else None
example["captions"] = captions
example["original_sizes_hw"] = torch.stack([torch.LongTensor(x) for x in original_sizes_hw])
example["crop_top_lefts"] = torch.stack([torch.LongTensor(x) for x in crop_top_lefts])
example["target_sizes_hw"] = torch.stack([torch.LongTensor(x) for x in target_sizes_hw])
example["flippeds"] = flippeds
if self.debug_dataset:
example["image_keys"] = bucket[image_index : image_index + self.batch_size]
return example
def get_item_for_caching(self, bucket, bucket_batch_size, image_index):
captions = []
images = []
input_ids1_list = []
input_ids2_list = []
absolute_paths = []
resized_sizes = []
bucket_reso = None
flip_aug = None
random_crop = None
for image_key in bucket[image_index : image_index + bucket_batch_size]:
image_info = self.image_data[image_key]
subset = self.image_to_subset[image_key]
if flip_aug is None:
flip_aug = subset.flip_aug
random_crop = subset.random_crop
bucket_reso = image_info.bucket_reso
else:
assert flip_aug == subset.flip_aug, "flip_aug must be same in a batch"
assert random_crop == subset.random_crop, "random_crop must be same in a batch"
assert bucket_reso == image_info.bucket_reso, "bucket_reso must be same in a batch"
caption = image_info.caption # TODO cache some patterns of dropping, shuffling, etc.
if self.caching_mode == "latents":
image = load_image(image_info.absolute_path)
else:
image = None
if self.caching_mode == "text":
input_ids1 = self.get_input_ids(caption, self.tokenizers[0])
input_ids2 = self.get_input_ids(caption, self.tokenizers[1])
else:
input_ids1 = None
input_ids2 = None
captions.append(caption)
images.append(image)
input_ids1_list.append(input_ids1)
input_ids2_list.append(input_ids2)
absolute_paths.append(image_info.absolute_path)
resized_sizes.append(image_info.resized_size)
example = {}
if images[0] is None:
images = None
example["images"] = images
example["captions"] = captions
example["input_ids1_list"] = input_ids1_list
example["input_ids2_list"] = input_ids2_list
example["absolute_paths"] = absolute_paths
example["resized_sizes"] = resized_sizes
example["flip_aug"] = flip_aug
example["random_crop"] = random_crop
example["bucket_reso"] = bucket_reso
return example
class DreamBoothDataset(BaseDataset):
def __init__(
self,
subsets: Sequence[DreamBoothSubset],
batch_size: int,
tokenizer,
max_token_length,
resolution,
enable_bucket: bool,
min_bucket_reso: int,
max_bucket_reso: int,
bucket_reso_steps: int,
bucket_no_upscale: bool,
prior_loss_weight: float,
debug_dataset,
) -> None:
super().__init__(tokenizer, max_token_length, resolution, debug_dataset)
assert resolution is not None, f"resolution is required / resolution(解像度)指定は必須です"
self.batch_size = batch_size
self.size = min(self.width, self.height) # 短いほう
self.prior_loss_weight = prior_loss_weight
self.latents_cache = None
self.enable_bucket = enable_bucket
if self.enable_bucket:
assert (
min(resolution) >= min_bucket_reso
), f"min_bucket_reso must be equal or less than resolution / min_bucket_resoは最小解像度より大きくできません。解像度を大きくするかmin_bucket_resoを小さくしてください"
assert (
max(resolution) <= max_bucket_reso
), f"max_bucket_reso must be equal or greater than resolution / max_bucket_resoは最大解像度より小さくできません。解像度を小さくするかmin_bucket_resoを大きくしてください"
self.min_bucket_reso = min_bucket_reso
self.max_bucket_reso = max_bucket_reso
self.bucket_reso_steps = bucket_reso_steps
self.bucket_no_upscale = bucket_no_upscale
else:
self.min_bucket_reso = None
self.max_bucket_reso = None
self.bucket_reso_steps = None # この情報は使われない
self.bucket_no_upscale = False
def read_caption(img_path, caption_extension):
# captionの候補ファイル名を作る
base_name = os.path.splitext(img_path)[0]
base_name_face_det = base_name
tokens = base_name.split("_")
if len(tokens) >= 5:
base_name_face_det = "_".join(tokens[:-4])
cap_paths = [base_name + caption_extension, base_name_face_det + caption_extension]
caption = None
for cap_path in cap_paths:
if os.path.isfile(cap_path):
with open(cap_path, "rt", encoding="utf-8") as f:
try:
lines = f.readlines()
except UnicodeDecodeError as e:
print(f"illegal char in file (not UTF-8) / ファイルにUTF-8以外の文字があります: {cap_path}")
raise e
assert len(lines) > 0, f"caption file is empty / キャプションファイルが空です: {cap_path}"
caption = lines[0].strip()
break
return caption
def load_dreambooth_dir(subset: DreamBoothSubset):
if not os.path.isdir(subset.image_dir):
print(f"not directory: {subset.image_dir}")
return [], []
img_paths = glob_images(subset.image_dir, "*")
print(f"found directory {subset.image_dir} contains {len(img_paths)} image files")
# 画像ファイルごとにプロンプトを読み込み、もしあればそちらを使う
captions = []
missing_captions = []
for img_path in img_paths:
cap_for_img = read_caption(img_path, subset.caption_extension)
if cap_for_img is None and subset.class_tokens is None:
print(
f"neither caption file nor class tokens are found. use empty caption for {img_path} / キャプションファイルもclass tokenも見つかりませんでした。空のキャプションを使用します: {img_path}"
)
captions.append("")
missing_captions.append(img_path)
else:
if cap_for_img is None:
captions.append(subset.class_tokens)
missing_captions.append(img_path)
else:
captions.append(cap_for_img)
self.set_tag_frequency(os.path.basename(subset.image_dir), captions) # タグ頻度を記録
if missing_captions:
number_of_missing_captions = len(missing_captions)
number_of_missing_captions_to_show = 5
remaining_missing_captions = number_of_missing_captions - number_of_missing_captions_to_show
print(
f"No caption file found for {number_of_missing_captions} images. Training will continue without captions for these images. If class token exists, it will be used. / {number_of_missing_captions}枚の画像にキャプションファイルが見つかりませんでした。これらの画像についてはキャプションなしで学習を続行します。class tokenが存在する場合はそれを使います。"
)
for i, missing_caption in enumerate(missing_captions):
if i >= number_of_missing_captions_to_show:
print(missing_caption + f"... and {remaining_missing_captions} more")
break
print(missing_caption)
return img_paths, captions
print("prepare images.")
num_train_images = 0
num_reg_images = 0
reg_infos: List[ImageInfo] = []
for subset in subsets:
if subset.num_repeats < 1:
print(
f"ignore subset with image_dir='{subset.image_dir}': num_repeats is less than 1 / num_repeatsが1を下回っているためサブセットを無視します: {subset.num_repeats}"
)
continue
if subset in self.subsets:
print(
f"ignore duplicated subset with image_dir='{subset.image_dir}': use the first one / 既にサブセットが登録されているため、重複した後発のサブセットを無視します"
)
continue
img_paths, captions = load_dreambooth_dir(subset)
if len(img_paths) < 1:
print(f"ignore subset with image_dir='{subset.image_dir}': no images found / 画像が見つからないためサブセットを無視します")
continue
if subset.is_reg:
num_reg_images += subset.num_repeats * len(img_paths)
else:
num_train_images += subset.num_repeats * len(img_paths)
for img_path, caption in zip(img_paths, captions):
info = ImageInfo(img_path, subset.num_repeats, caption, subset.is_reg, img_path)
if subset.is_reg:
reg_infos.append(info)
else:
self.register_image(info, subset)
subset.img_count = len(img_paths)
self.subsets.append(subset)
print(f"{num_train_images} train images with repeating.")
self.num_train_images = num_train_images
print(f"{num_reg_images} reg images.")
if num_train_images < num_reg_images:
print("some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります")
if num_reg_images == 0:
print("no regularization images / 正則化画像が見つかりませんでした")
else:
# num_repeatsを計算する:どうせ大した数ではないのでループで処理する
n = 0
first_loop = True
while n < num_train_images:
for info in reg_infos:
if first_loop:
self.register_image(info, subset)
n += info.num_repeats
else:
info.num_repeats += 1 # rewrite registered info
n += 1
if n >= num_train_images:
break
first_loop = False
self.num_reg_images = num_reg_images
class FineTuningDataset(BaseDataset):
def __init__(
self,
subsets: Sequence[FineTuningSubset],
batch_size: int,
tokenizer,
max_token_length,
resolution,
enable_bucket: bool,
min_bucket_reso: int,
max_bucket_reso: int,
bucket_reso_steps: int,
bucket_no_upscale: bool,
debug_dataset,
) -> None:
super().__init__(tokenizer, max_token_length, resolution, debug_dataset)
self.batch_size = batch_size
self.num_train_images = 0
self.num_reg_images = 0
for subset in subsets:
if subset.num_repeats < 1:
print(
f"ignore subset with metadata_file='{subset.metadata_file}': num_repeats is less than 1 / num_repeatsが1を下回っているためサブセットを無視します: {subset.num_repeats}"
)
continue
if subset in self.subsets:
print(
f"ignore duplicated subset with metadata_file='{subset.metadata_file}': use the first one / 既にサブセットが登録されているため、重複した後発のサブセットを無視します"
)
continue
# メタデータを読み込む
if os.path.exists(subset.metadata_file):
print(f"loading existing metadata: {subset.metadata_file}")
with open(subset.metadata_file, "rt", encoding="utf-8") as f:
metadata = json.load(f)
else:
raise ValueError(f"no metadata / メタデータファイルがありません: {subset.metadata_file}")
if len(metadata) < 1:
print(f"ignore subset with '{subset.metadata_file}': no image entries found / 画像に関するデータが見つからないためサブセットを無視します")
continue
tags_list = []
for image_key, img_md in metadata.items():
# path情報を作る
abs_path = None
# まず画像を優先して探す
if os.path.exists(image_key):
abs_path = image_key
else:
# わりといい加減だがいい方法が思いつかん
paths = glob_images(subset.image_dir, image_key)
if len(paths) > 0:
abs_path = paths[0]
# なければnpzを探す
if abs_path is None:
if os.path.exists(os.path.splitext(image_key)[0] + ".npz"):
abs_path = os.path.splitext(image_key)[0] + ".npz"
else:
npz_path = os.path.join(subset.image_dir, image_key + ".npz")
if os.path.exists(npz_path):
abs_path = npz_path
assert abs_path is not None, f"no image / 画像がありません: {image_key}"
caption = img_md.get("caption")
tags = img_md.get("tags")
if caption is None:
caption = tags
elif tags is not None and len(tags) > 0:
caption = caption + ", " + tags
tags_list.append(tags)
if caption is None:
caption = ""
image_info = ImageInfo(image_key, subset.num_repeats, caption, False, abs_path)
image_info.image_size = img_md.get("train_resolution")
if not subset.color_aug and not subset.random_crop:
# if npz exists, use them
image_info.latents_npz, image_info.latents_npz_flipped = self.image_key_to_npz_file(subset, image_key)
self.register_image(image_info, subset)
self.num_train_images += len(metadata) * subset.num_repeats
# TODO do not record tag freq when no tag
self.set_tag_frequency(os.path.basename(subset.metadata_file), tags_list)
subset.img_count = len(metadata)
self.subsets.append(subset)
# check existence of all npz files
use_npz_latents = all([not (subset.color_aug or subset.random_crop) for subset in self.subsets])
if use_npz_latents:
flip_aug_in_subset = False
npz_any = False
npz_all = True
for image_info in self.image_data.values():
subset = self.image_to_subset[image_info.image_key]
has_npz = image_info.latents_npz is not None
npz_any = npz_any or has_npz
if subset.flip_aug:
has_npz = has_npz and image_info.latents_npz_flipped is not None
flip_aug_in_subset = True
npz_all = npz_all and has_npz
if npz_any and not npz_all:
break
if not npz_any:
use_npz_latents = False
print(f"npz file does not exist. ignore npz files / npzファイルが見つからないためnpzファイルを無視します")
elif not npz_all:
use_npz_latents = False
print(f"some of npz file does not exist. ignore npz files / いくつかのnpzファイルが見つからないためnpzファイルを無視します")
if flip_aug_in_subset:
print("maybe no flipped files / 反転されたnpzファイルがないのかもしれません")
# else:
# print("npz files are not used with color_aug and/or random_crop / color_augまたはrandom_cropが指定されているためnpzファイルは使用されません")
# check min/max bucket size
sizes = set()
resos = set()
for image_info in self.image_data.values():
if image_info.image_size is None:
sizes = None # not calculated
break
sizes.add(image_info.image_size[0])
sizes.add(image_info.image_size[1])
resos.add(tuple(image_info.image_size))
if sizes is None:
if use_npz_latents:
use_npz_latents = False
print(f"npz files exist, but no bucket info in metadata. ignore npz files / メタデータにbucket情報がないためnpzファイルを無視します")
assert (
resolution is not None
), "if metadata doesn't have bucket info, resolution is required / メタデータにbucket情報がない場合はresolutionを指定してください"
self.enable_bucket = enable_bucket
if self.enable_bucket:
self.min_bucket_reso = min_bucket_reso
self.max_bucket_reso = max_bucket_reso
self.bucket_reso_steps = bucket_reso_steps
self.bucket_no_upscale = bucket_no_upscale
else:
if not enable_bucket:
print("metadata has bucket info, enable bucketing / メタデータにbucket情報があるためbucketを有効にします")
print("using bucket info in metadata / メタデータ内のbucket情報を使います")
self.enable_bucket = True
assert (
not bucket_no_upscale
), "if metadata has bucket info, bucket reso is precalculated, so bucket_no_upscale cannot be used / メタデータ内にbucket情報がある場合はbucketの解像度は計算済みのため、bucket_no_upscaleは使えません"
# bucket情報を初期化しておく、make_bucketsで再作成しない
self.bucket_manager = BucketManager(False, None, None, None, None)
self.bucket_manager.set_predefined_resos(resos)
# npz情報をきれいにしておく
if not use_npz_latents:
for image_info in self.image_data.values():
image_info.latents_npz = image_info.latents_npz_flipped = None
def image_key_to_npz_file(self, subset: FineTuningSubset, image_key):
base_name = os.path.splitext(image_key)[0]
npz_file_norm = base_name + ".npz"
if os.path.exists(npz_file_norm):
# image_key is full path
npz_file_flip = base_name + "_flip.npz"
if not os.path.exists(npz_file_flip):
npz_file_flip = None
return npz_file_norm, npz_file_flip
# if not full path, check image_dir. if image_dir is None, return None
if subset.image_dir is None:
return None, None
# image_key is relative path
npz_file_norm = os.path.join(subset.image_dir, image_key + ".npz")
npz_file_flip = os.path.join(subset.image_dir, image_key + "_flip.npz")
if not os.path.exists(npz_file_norm):
npz_file_norm = None
npz_file_flip = None
elif not os.path.exists(npz_file_flip):
npz_file_flip = None
return npz_file_norm, npz_file_flip
class ControlNetDataset(BaseDataset):
def __init__(
self,
subsets: Sequence[ControlNetSubset],
batch_size: int,
tokenizer,
max_token_length,
resolution,
enable_bucket: bool,
min_bucket_reso: int,
max_bucket_reso: int,
bucket_reso_steps: int,
bucket_no_upscale: bool,
debug_dataset,
) -> None:
super().__init__(tokenizer, max_token_length, resolution, debug_dataset)
db_subsets = []
for subset in subsets:
db_subset = DreamBoothSubset(
subset.image_dir,
False,
None,
subset.caption_extension,
subset.num_repeats,
subset.shuffle_caption,
subset.caption_separator,
subset.keep_tokens,
subset.keep_tokens_separator,
subset.color_aug,
subset.flip_aug,
subset.face_crop_aug_range,
subset.random_crop,
subset.caption_dropout_rate,
subset.caption_dropout_every_n_epochs,
subset.caption_tag_dropout_rate,
subset.caption_prefix,
subset.caption_suffix,
subset.token_warmup_min,
subset.token_warmup_step,
)
db_subsets.append(db_subset)
self.dreambooth_dataset_delegate = DreamBoothDataset(
db_subsets,
batch_size,
tokenizer,
max_token_length,
resolution,
enable_bucket,
min_bucket_reso,
max_bucket_reso,
bucket_reso_steps,
bucket_no_upscale,
1.0,
debug_dataset,
)
# config_util等から参照される値をいれておく(若干微妙なのでなんとかしたい)
self.image_data = self.dreambooth_dataset_delegate.image_data
self.batch_size = batch_size
self.num_train_images = self.dreambooth_dataset_delegate.num_train_images
self.num_reg_images = self.dreambooth_dataset_delegate.num_reg_images
# assert all conditioning data exists
missing_imgs = []
cond_imgs_with_img = set()
for image_key, info in self.dreambooth_dataset_delegate.image_data.items():
db_subset = self.dreambooth_dataset_delegate.image_to_subset[image_key]
subset = None
for s in subsets:
if s.image_dir == db_subset.image_dir:
subset = s
break
assert subset is not None, "internal error: subset not found"
if not os.path.isdir(subset.conditioning_data_dir):
print(f"not directory: {subset.conditioning_data_dir}")
continue
img_basename = os.path.basename(info.absolute_path)
ctrl_img_path = os.path.join(subset.conditioning_data_dir, img_basename)
if not os.path.exists(ctrl_img_path):
missing_imgs.append(img_basename)
info.cond_img_path = ctrl_img_path
cond_imgs_with_img.add(ctrl_img_path)
extra_imgs = []
for subset in subsets:
conditioning_img_paths = glob_images(subset.conditioning_data_dir, "*")
extra_imgs.extend(
[cond_img_path for cond_img_path in conditioning_img_paths if cond_img_path not in cond_imgs_with_img]
)
assert len(missing_imgs) == 0, f"missing conditioning data for {len(missing_imgs)} images: {missing_imgs}"
assert len(extra_imgs) == 0, f"extra conditioning data for {len(extra_imgs)} images: {extra_imgs}"
self.conditioning_image_transforms = IMAGE_TRANSFORMS
def make_buckets(self):
self.dreambooth_dataset_delegate.make_buckets()
self.bucket_manager = self.dreambooth_dataset_delegate.bucket_manager
self.buckets_indices = self.dreambooth_dataset_delegate.buckets_indices
def cache_latents(self, vae, vae_batch_size=1, cache_to_disk=False, is_main_process=True):
return self.dreambooth_dataset_delegate.cache_latents(vae, vae_batch_size, cache_to_disk, is_main_process)
def __len__(self):
return self.dreambooth_dataset_delegate.__len__()
def __getitem__(self, index):
example = self.dreambooth_dataset_delegate[index]
bucket = self.dreambooth_dataset_delegate.bucket_manager.buckets[
self.dreambooth_dataset_delegate.buckets_indices[index].bucket_index
]
bucket_batch_size = self.dreambooth_dataset_delegate.buckets_indices[index].bucket_batch_size
image_index = self.dreambooth_dataset_delegate.buckets_indices[index].batch_index * bucket_batch_size
conditioning_images = []
for i, image_key in enumerate(bucket[image_index : image_index + bucket_batch_size]):
image_info = self.dreambooth_dataset_delegate.image_data[image_key]
target_size_hw = example["target_sizes_hw"][i]
original_size_hw = example["original_sizes_hw"][i]
crop_top_left = example["crop_top_lefts"][i]
flipped = example["flippeds"][i]
cond_img = load_image(image_info.cond_img_path)
if self.dreambooth_dataset_delegate.enable_bucket:
assert (
cond_img.shape[0] == original_size_hw[0] and cond_img.shape[1] == original_size_hw[1]
), f"size of conditioning image is not match / 画像サイズが合いません: {image_info.absolute_path}"
cond_img = cv2.resize(cond_img, image_info.resized_size, interpolation=cv2.INTER_AREA) # INTER_AREAでやりたいのでcv2でリサイズ
# TODO support random crop
# 現在サポートしているcropはrandomではなく中央のみ
h, w = target_size_hw
ct = (cond_img.shape[0] - h) // 2
cl = (cond_img.shape[1] - w) // 2
cond_img = cond_img[ct : ct + h, cl : cl + w]
else:
# assert (
# cond_img.shape[0] == self.height and cond_img.shape[1] == self.width
# ), f"image size is small / 画像サイズが小さいようです: {image_info.absolute_path}"
# resize to target
if cond_img.shape[0] != target_size_hw[0] or cond_img.shape[1] != target_size_hw[1]:
cond_img = cv2.resize(
cond_img, (int(target_size_hw[1]), int(target_size_hw[0])), interpolation=cv2.INTER_LANCZOS4
)
if flipped:
cond_img = cond_img[:, ::-1, :].copy() # copy to avoid negative stride
cond_img = self.conditioning_image_transforms(cond_img)
conditioning_images.append(cond_img)
example["conditioning_images"] = torch.stack(conditioning_images).to(memory_format=torch.contiguous_format).float()
return example
# behave as Dataset mock
class DatasetGroup(torch.utils.data.ConcatDataset):
def __init__(self, datasets: Sequence[Union[DreamBoothDataset, FineTuningDataset]]):
self.datasets: List[Union[DreamBoothDataset, FineTuningDataset]]
super().__init__(datasets)
self.image_data = {}
self.num_train_images = 0
self.num_reg_images = 0
# simply concat together
# TODO: handling image_data key duplication among dataset
# In practical, this is not the big issue because image_data is accessed from outside of dataset only for debug_dataset.
for dataset in datasets:
self.image_data.update(dataset.image_data)
self.num_train_images += dataset.num_train_images
self.num_reg_images += dataset.num_reg_images
def add_replacement(self, str_from, str_to):
for dataset in self.datasets:
dataset.add_replacement(str_from, str_to)
# def make_buckets(self):
# for dataset in self.datasets:
# dataset.make_buckets()
def enable_XTI(self, *args, **kwargs):
for dataset in self.datasets:
dataset.enable_XTI(*args, **kwargs)
def cache_latents(self, vae, vae_batch_size=1, cache_to_disk=False, is_main_process=True):
for i, dataset in enumerate(self.datasets):
print(f"[Dataset {i}]")
dataset.cache_latents(vae, vae_batch_size, cache_to_disk, is_main_process)
def cache_text_encoder_outputs(
self, tokenizers, text_encoders, device, weight_dtype, cache_to_disk=False, is_main_process=True
):
for i, dataset in enumerate(self.datasets):
print(f"[Dataset {i}]")
dataset.cache_text_encoder_outputs(tokenizers, text_encoders, device, weight_dtype, cache_to_disk, is_main_process)
def set_caching_mode(self, caching_mode):
for dataset in self.datasets:
dataset.set_caching_mode(caching_mode)
def verify_bucket_reso_steps(self, min_steps: int):
for dataset in self.datasets:
dataset.verify_bucket_reso_steps(min_steps)
def is_latent_cacheable(self) -> bool:
return all([dataset.is_latent_cacheable() for dataset in self.datasets])
def is_text_encoder_output_cacheable(self) -> bool:
return all([dataset.is_text_encoder_output_cacheable() for dataset in self.datasets])
def set_current_epoch(self, epoch):
for dataset in self.datasets:
dataset.set_current_epoch(epoch)
def set_current_step(self, step):
for dataset in self.datasets:
dataset.set_current_step(step)
def set_max_train_steps(self, max_train_steps):
for dataset in self.datasets:
dataset.set_max_train_steps(max_train_steps)
def disable_token_padding(self):
for dataset in self.datasets:
dataset.disable_token_padding()
def is_disk_cached_latents_is_expected(reso, npz_path: str, flip_aug: bool):
expected_latents_size = (reso[1] // 8, reso[0] // 8) # bucket_resoはWxHなので注意
if not os.path.exists(npz_path):
return False
npz = np.load(npz_path)
if "latents" not in npz or "original_size" not in npz or "crop_ltrb" not in npz: # old ver?
return False
if npz["latents"].shape[1:3] != expected_latents_size:
return False
if flip_aug:
if "latents_flipped" not in npz:
return False
if npz["latents_flipped"].shape[1:3] != expected_latents_size:
return False
return True
# 戻り値は、latents_tensor, (original_size width, original_size height), (crop left, crop top)
def load_latents_from_disk(
npz_path,
) -> Tuple[Optional[torch.Tensor], Optional[List[int]], Optional[List[int]], Optional[torch.Tensor]]:
npz = np.load(npz_path)
if "latents" not in npz:
raise ValueError(f"error: npz is old format. please re-generate {npz_path}")
latents = npz["latents"]
original_size = npz["original_size"].tolist()
crop_ltrb = npz["crop_ltrb"].tolist()
flipped_latents = npz["latents_flipped"] if "latents_flipped" in npz else None
return latents, original_size, crop_ltrb, flipped_latents
def save_latents_to_disk(npz_path, latents_tensor, original_size, crop_ltrb, flipped_latents_tensor=None):
kwargs = {}
if flipped_latents_tensor is not None:
kwargs["latents_flipped"] = flipped_latents_tensor.float().cpu().numpy()
np.savez(
npz_path,
latents=latents_tensor.float().cpu().numpy(),
original_size=np.array(original_size),
crop_ltrb=np.array(crop_ltrb),
**kwargs,
)
def debug_dataset(train_dataset, show_input_ids=False):
print(f"Total dataset length (steps) / データセットの長さ(ステップ数): {len(train_dataset)}")
print("`S` for next step, `E` for next epoch no. , Escape for exit. / Sキーで次のステップ、Eキーで次のエポック、Escキーで中断、終了します")
epoch = 1
while True:
print(f"\nepoch: {epoch}")
steps = (epoch - 1) * len(train_dataset) + 1
indices = list(range(len(train_dataset)))
random.shuffle(indices)
k = 0
for i, idx in enumerate(indices):
train_dataset.set_current_epoch(epoch)
train_dataset.set_current_step(steps)
print(f"steps: {steps} ({i + 1}/{len(train_dataset)})")
example = train_dataset[idx]
if example["latents"] is not None:
print(f"sample has latents from npz file: {example['latents'].size()}")
for j, (ik, cap, lw, iid, orgsz, crptl, trgsz, flpdz) in enumerate(
zip(
example["image_keys"],
example["captions"],
example["loss_weights"],
example["input_ids"],
example["original_sizes_hw"],
example["crop_top_lefts"],
example["target_sizes_hw"],
example["flippeds"],
)
):
print(
f'{ik}, size: {train_dataset.image_data[ik].image_size}, loss weight: {lw}, caption: "{cap}", original size: {orgsz}, crop top left: {crptl}, target size: {trgsz}, flipped: {flpdz}'
)
if show_input_ids:
print(f"input ids: {iid}")
if "input_ids2" in example:
print(f"input ids2: {example['input_ids2'][j]}")
if example["images"] is not None:
im = example["images"][j]
print(f"image size: {im.size()}")
im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8)
im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c
im = im[:, :, ::-1] # RGB -> BGR (OpenCV)
if "conditioning_images" in example:
cond_img = example["conditioning_images"][j]
print(f"conditioning image size: {cond_img.size()}")
cond_img = ((cond_img.numpy() + 1.0) * 127.5).astype(np.uint8)
cond_img = np.transpose(cond_img, (1, 2, 0))
cond_img = cond_img[:, :, ::-1]
if os.name == "nt":
cv2.imshow("cond_img", cond_img)
if os.name == "nt": # only windows
cv2.imshow("img", im)
k = cv2.waitKey()
cv2.destroyAllWindows()
if k == 27 or k == ord("s") or k == ord("e"):
break
steps += 1
if k == ord("e"):
break
if k == 27 or (example["images"] is None and i >= 8):
k = 27
break
if k == 27:
break
epoch += 1
def glob_images(directory, base="*"):
img_paths = []
for ext in IMAGE_EXTENSIONS:
if base == "*":
img_paths.extend(glob.glob(os.path.join(glob.escape(directory), base + ext)))
else:
img_paths.extend(glob.glob(glob.escape(os.path.join(directory, base + ext))))
img_paths = list(set(img_paths)) # 重複を排除
img_paths.sort()
return img_paths
def glob_images_pathlib(dir_path, recursive):
image_paths = []
if recursive:
for ext in IMAGE_EXTENSIONS:
image_paths += list(dir_path.rglob("*" + ext))
else:
for ext in IMAGE_EXTENSIONS:
image_paths += list(dir_path.glob("*" + ext))
image_paths = list(set(image_paths)) # 重複を排除
image_paths.sort()
return image_paths
class MinimalDataset(BaseDataset):
def __init__(self, tokenizer, max_token_length, resolution, debug_dataset=False):
super().__init__(tokenizer, max_token_length, resolution, debug_dataset)
self.num_train_images = 0 # update in subclass
self.num_reg_images = 0 # update in subclass
self.datasets = [self]
self.batch_size = 1 # update in subclass
self.subsets = [self]
self.num_repeats = 1 # update in subclass if needed
self.img_count = 1 # update in subclass if needed
self.bucket_info = {}
self.is_reg = False
self.image_dir = "dummy" # for metadata
def verify_bucket_reso_steps(self, min_steps: int):
pass
def is_latent_cacheable(self) -> bool:
return False
def __len__(self):
raise NotImplementedError
# override to avoid shuffling buckets
def set_current_epoch(self, epoch):
self.current_epoch = epoch
def __getitem__(self, idx):
r"""
The subclass may have image_data for debug_dataset, which is a dict of ImageInfo objects.
Returns: example like this:
for i in range(batch_size):
image_key = ... # whatever hashable
image_keys.append(image_key)
image = ... # PIL Image
img_tensor = self.image_transforms(img)
images.append(img_tensor)
caption = ... # str
input_ids = self.get_input_ids(caption)
input_ids_list.append(input_ids)
captions.append(caption)
images = torch.stack(images, dim=0)
input_ids_list = torch.stack(input_ids_list, dim=0)
example = {
"images": images,
"input_ids": input_ids_list,
"captions": captions, # for debug_dataset
"latents": None,
"image_keys": image_keys, # for debug_dataset
"loss_weights": torch.ones(batch_size, dtype=torch.float32),
}
return example
"""
raise NotImplementedError
def load_arbitrary_dataset(args, tokenizer) -> MinimalDataset:
module = ".".join(args.dataset_class.split(".")[:-1])
dataset_class = args.dataset_class.split(".")[-1]
module = importlib.import_module(module)
dataset_class = getattr(module, dataset_class)
train_dataset_group: MinimalDataset = dataset_class(tokenizer, args.max_token_length, args.resolution, args.debug_dataset)
return train_dataset_group
def load_image(image_path):
image = Image.open(image_path)
if not image.mode == "RGB":
image = image.convert("RGB")
img = np.array(image, np.uint8)
return img
# 画像を読み込む。戻り値はnumpy.ndarray,(original width, original height),(crop left, crop top, crop right, crop bottom)
def trim_and_resize_if_required(
random_crop: bool, image: Image.Image, reso, resized_size: Tuple[int, int]
) -> Tuple[np.ndarray, Tuple[int, int], Tuple[int, int, int, int]]:
image_height, image_width = image.shape[0:2]
original_size = (image_width, image_height) # size before resize
if image_width != resized_size[0] or image_height != resized_size[1]:
# リサイズする
image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA) # INTER_AREAでやりたいのでcv2でリサイズ
image_height, image_width = image.shape[0:2]
if image_width > reso[0]:
trim_size = image_width - reso[0]
p = trim_size // 2 if not random_crop else random.randint(0, trim_size)
# print("w", trim_size, p)
image = image[:, p : p + reso[0]]
if image_height > reso[1]:
trim_size = image_height - reso[1]
p = trim_size // 2 if not random_crop else random.randint(0, trim_size)
# print("h", trim_size, p)
image = image[p : p + reso[1]]
# random cropの場合のcropされた値をどうcrop left/topに反映するべきか全くアイデアがない
# I have no idea how to reflect the cropped value in crop left/top in the case of random crop
crop_ltrb = BucketManager.get_crop_ltrb(reso, original_size)
assert image.shape[0] == reso[1] and image.shape[1] == reso[0], f"internal error, illegal trimmed size: {image.shape}, {reso}"
return image, original_size, crop_ltrb
def cache_batch_latents(
vae: AutoencoderKL, cache_to_disk: bool, image_infos: List[ImageInfo], flip_aug: bool, random_crop: bool
) -> None:
r"""
requires image_infos to have: absolute_path, bucket_reso, resized_size, latents_npz
optionally requires image_infos to have: image
if cache_to_disk is True, set info.latents_npz
flipped latents is also saved if flip_aug is True
if cache_to_disk is False, set info.latents
latents_flipped is also set if flip_aug is True
latents_original_size and latents_crop_ltrb are also set
"""
images = []
for info in image_infos:
image = load_image(info.absolute_path) if info.image is None else np.array(info.image, np.uint8)
# TODO 画像のメタデータが壊れていて、メタデータから割り当てたbucketと実際の画像サイズが一致しない場合があるのでチェック追加要
image, original_size, crop_ltrb = trim_and_resize_if_required(random_crop, image, info.bucket_reso, info.resized_size)
image = IMAGE_TRANSFORMS(image)
images.append(image)
info.latents_original_size = original_size
info.latents_crop_ltrb = crop_ltrb
img_tensors = torch.stack(images, dim=0)
img_tensors = img_tensors.to(device=vae.device, dtype=vae.dtype)
with torch.no_grad():
latents = vae.encode(img_tensors).latent_dist.sample().to("cpu")
if flip_aug:
img_tensors = torch.flip(img_tensors, dims=[3])
with torch.no_grad():
flipped_latents = vae.encode(img_tensors).latent_dist.sample().to("cpu")
else:
flipped_latents = [None] * len(latents)
for info, latent, flipped_latent in zip(image_infos, latents, flipped_latents):
# check NaN
if torch.isnan(latents).any() or (flipped_latent is not None and torch.isnan(flipped_latent).any()):
raise RuntimeError(f"NaN detected in latents: {info.absolute_path}")
if cache_to_disk:
save_latents_to_disk(info.latents_npz, latent, info.latents_original_size, info.latents_crop_ltrb, flipped_latent)
else:
info.latents = latent
if flip_aug:
info.latents_flipped = flipped_latent
# FIXME this slows down caching a lot, specify this as an option
if torch.cuda.is_available():
torch.cuda.empty_cache()
def cache_batch_text_encoder_outputs(
image_infos, tokenizers, text_encoders, max_token_length, cache_to_disk, input_ids1, input_ids2, dtype
):
input_ids1 = input_ids1.to(text_encoders[0].device)
input_ids2 = input_ids2.to(text_encoders[1].device)
with torch.no_grad():
b_hidden_state1, b_hidden_state2, b_pool2 = get_hidden_states_sdxl(
max_token_length,
input_ids1,
input_ids2,
tokenizers[0],
tokenizers[1],
text_encoders[0],
text_encoders[1],
dtype,
)
# ここでcpuに移動しておかないと、上書きされてしまう
b_hidden_state1 = b_hidden_state1.detach().to("cpu") # b,n*75+2,768
b_hidden_state2 = b_hidden_state2.detach().to("cpu") # b,n*75+2,1280
b_pool2 = b_pool2.detach().to("cpu") # b,1280
for info, hidden_state1, hidden_state2, pool2 in zip(image_infos, b_hidden_state1, b_hidden_state2, b_pool2):
if cache_to_disk:
save_text_encoder_outputs_to_disk(info.text_encoder_outputs_npz, hidden_state1, hidden_state2, pool2)
else:
info.text_encoder_outputs1 = hidden_state1
info.text_encoder_outputs2 = hidden_state2
info.text_encoder_pool2 = pool2
def save_text_encoder_outputs_to_disk(npz_path, hidden_state1, hidden_state2, pool2):
np.savez(
npz_path,
hidden_state1=hidden_state1.cpu().float().numpy(),
hidden_state2=hidden_state2.cpu().float().numpy(),
pool2=pool2.cpu().float().numpy(),
)
def load_text_encoder_outputs_from_disk(npz_path):
with np.load(npz_path) as f:
hidden_state1 = torch.from_numpy(f["hidden_state1"])
hidden_state2 = torch.from_numpy(f["hidden_state2"]) if "hidden_state2" in f else None
pool2 = torch.from_numpy(f["pool2"]) if "pool2" in f else None
return hidden_state1, hidden_state2, pool2
# endregion
# region モジュール入れ替え部
"""
高速化のためのモジュール入れ替え
"""
# FlashAttentionを使うCrossAttention
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
# constants
EPSILON = 1e-6
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def model_hash(filename):
"""Old model hash used by stable-diffusion-webui"""
try:
with open(filename, "rb") as file:
m = hashlib.sha256()
file.seek(0x100000)
m.update(file.read(0x10000))
return m.hexdigest()[0:8]
except FileNotFoundError:
return "NOFILE"
except IsADirectoryError: # Linux?
return "IsADirectory"
except PermissionError: # Windows
return "IsADirectory"
def calculate_sha256(filename):
"""New model hash used by stable-diffusion-webui"""
try:
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
with open(filename, "rb") as f:
for chunk in iter(lambda: f.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
except FileNotFoundError:
return "NOFILE"
except IsADirectoryError: # Linux?
return "IsADirectory"
except PermissionError: # Windows
return "IsADirectory"
def precalculate_safetensors_hashes(tensors, metadata):
"""Precalculate the model hashes needed by sd-webui-additional-networks to
save time on indexing the model later."""
# Because writing user metadata to the file can change the result of
# sd_models.model_hash(), only retain the training metadata for purposes of
# calculating the hash, as they are meant to be immutable
metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")}
bytes = safetensors.torch.save(tensors, metadata)
b = BytesIO(bytes)
model_hash = addnet_hash_safetensors(b)
legacy_hash = addnet_hash_legacy(b)
return model_hash, legacy_hash
def addnet_hash_legacy(b):
"""Old model hash used by sd-webui-additional-networks for .safetensors format files"""
m = hashlib.sha256()
b.seek(0x100000)
m.update(b.read(0x10000))
return m.hexdigest()[0:8]
def addnet_hash_safetensors(b):
"""New model hash used by sd-webui-additional-networks for .safetensors format files"""
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
b.seek(0)
header = b.read(8)
n = int.from_bytes(header, "little")
offset = n + 8
b.seek(offset)
for chunk in iter(lambda: b.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
def get_git_revision_hash() -> str:
try:
return subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=os.path.dirname(__file__)).decode("ascii").strip()
except:
return "(unknown)"
# def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers):
# replace_attentions_for_hypernetwork()
# # unet is not used currently, but it is here for future use
# unet.enable_xformers_memory_efficient_attention()
# return
# if mem_eff_attn:
# unet.set_attn_processor(FlashAttnProcessor())
# elif xformers:
# unet.enable_xformers_memory_efficient_attention()
# def replace_unet_cross_attn_to_xformers():
# print("CrossAttention.forward has been replaced to enable xformers.")
# try:
# import xformers.ops
# except ImportError:
# raise ImportError("No xformers / xformersがインストールされていないようです")
# def forward_xformers(self, x, context=None, mask=None):
# h = self.heads
# q_in = self.to_q(x)
# context = default(context, x)
# context = context.to(x.dtype)
# if hasattr(self, "hypernetwork") and self.hypernetwork is not None:
# context_k, context_v = self.hypernetwork.forward(x, context)
# context_k = context_k.to(x.dtype)
# context_v = context_v.to(x.dtype)
# else:
# context_k = context
# context_v = context
# k_in = self.to_k(context_k)
# v_in = self.to_v(context_v)
# q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in))
# del q_in, k_in, v_in
# q = q.contiguous()
# k = k.contiguous()
# v = v.contiguous()
# out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
# out = rearrange(out, "b n h d -> b n (h d)", h=h)
# # diffusers 0.7.0~
# out = self.to_out[0](out)
# out = self.to_out[1](out)
# return out
# diffusers.models.attention.CrossAttention.forward = forward_xformers
def replace_unet_modules(unet: UNet2DConditionModel, mem_eff_attn, xformers, sdpa):
if mem_eff_attn:
print("Enable memory efficient attention for U-Net")
unet.set_use_memory_efficient_attention(False, True)
elif xformers:
print("Enable xformers for U-Net")
try:
import xformers.ops
except ImportError:
raise ImportError("No xformers / xformersがインストールされていないようです")
unet.set_use_memory_efficient_attention(True, False)
elif sdpa:
print("Enable SDPA for U-Net")
unet.set_use_sdpa(True)
"""
def replace_vae_modules(vae: diffusers.models.AutoencoderKL, mem_eff_attn, xformers):
# vae is not used currently, but it is here for future use
if mem_eff_attn:
replace_vae_attn_to_memory_efficient()
elif xformers:
# とりあえずDiffusersのxformersを使う。AttentionがあるのはMidBlockのみ
print("Use Diffusers xformers for VAE")
vae.encoder.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True)
vae.decoder.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True)
def replace_vae_attn_to_memory_efficient():
print("AttentionBlock.forward has been replaced to FlashAttention (not xformers)")
flash_func = FlashAttentionFunction
def forward_flash_attn(self, hidden_states):
print("forward_flash_attn")
q_bucket_size = 512
k_bucket_size = 1024
residual = hidden_states
batch, channel, height, width = hidden_states.shape
# norm
hidden_states = self.group_norm(hidden_states)
hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)
# proj to q, k, v
query_proj = self.query(hidden_states)
key_proj = self.key(hidden_states)
value_proj = self.value(hidden_states)
query_proj, key_proj, value_proj = map(
lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.num_heads), (query_proj, key_proj, value_proj)
)
out = flash_func.apply(query_proj, key_proj, value_proj, None, False, q_bucket_size, k_bucket_size)
out = rearrange(out, "b h n d -> b n (h d)")
# compute next hidden_states
hidden_states = self.proj_attn(hidden_states)
hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)
# res connect and rescale
hidden_states = (hidden_states + residual) / self.rescale_output_factor
return hidden_states
diffusers.models.attention.AttentionBlock.forward = forward_flash_attn
"""
# endregion
# region arguments
def load_metadata_from_safetensors(safetensors_file: str) -> dict:
"""r
This method locks the file. see https://github.com/huggingface/safetensors/issues/164
If the file isn't .safetensors or doesn't have metadata, return empty dict.
"""
if os.path.splitext(safetensors_file)[1] != ".safetensors":
return {}
with safetensors.safe_open(safetensors_file, framework="pt", device="cpu") as f:
metadata = f.metadata()
if metadata is None:
metadata = {}
return metadata
# this metadata is referred from train_network and various scripts, so we wrote here
SS_METADATA_KEY_V2 = "ss_v2"
SS_METADATA_KEY_BASE_MODEL_VERSION = "ss_base_model_version"
SS_METADATA_KEY_NETWORK_MODULE = "ss_network_module"
SS_METADATA_KEY_NETWORK_DIM = "ss_network_dim"
SS_METADATA_KEY_NETWORK_ALPHA = "ss_network_alpha"
SS_METADATA_KEY_NETWORK_ARGS = "ss_network_args"
SS_METADATA_MINIMUM_KEYS = [
SS_METADATA_KEY_V2,
SS_METADATA_KEY_BASE_MODEL_VERSION,
SS_METADATA_KEY_NETWORK_MODULE,
SS_METADATA_KEY_NETWORK_DIM,
SS_METADATA_KEY_NETWORK_ALPHA,
SS_METADATA_KEY_NETWORK_ARGS,
]
def build_minimum_network_metadata(
v2: Optional[bool],
base_model: Optional[str],
network_module: str,
network_dim: str,
network_alpha: str,
network_args: Optional[dict],
):
# old LoRA doesn't have base_model
metadata = {
SS_METADATA_KEY_NETWORK_MODULE: network_module,
SS_METADATA_KEY_NETWORK_DIM: network_dim,
SS_METADATA_KEY_NETWORK_ALPHA: network_alpha,
}
if v2 is not None:
metadata[SS_METADATA_KEY_V2] = v2
if base_model is not None:
metadata[SS_METADATA_KEY_BASE_MODEL_VERSION] = base_model
if network_args is not None:
metadata[SS_METADATA_KEY_NETWORK_ARGS] = json.dumps(network_args)
return metadata
def get_sai_model_spec(
state_dict: dict,
args: argparse.Namespace,
sdxl: bool,
lora: bool,
textual_inversion: bool,
is_stable_diffusion_ckpt: Optional[bool] = None, # None for TI and LoRA
):
timestamp = time.time()
v2 = args.v2
v_parameterization = args.v_parameterization
reso = args.resolution
title = args.metadata_title if args.metadata_title is not None else args.output_name
if args.min_timestep is not None or args.max_timestep is not None:
min_time_step = args.min_timestep if args.min_timestep is not None else 0
max_time_step = args.max_timestep if args.max_timestep is not None else 1000
timesteps = (min_time_step, max_time_step)
else:
timesteps = None
metadata = sai_model_spec.build_metadata(
state_dict,
v2,
v_parameterization,
sdxl,
lora,
textual_inversion,
timestamp,
title=title,
reso=reso,
is_stable_diffusion_ckpt=is_stable_diffusion_ckpt,
author=args.metadata_author,
description=args.metadata_description,
license=args.metadata_license,
tags=args.metadata_tags,
timesteps=timesteps,
clip_skip=args.clip_skip, # None or int
)
return metadata
def add_sd_models_arguments(parser: argparse.ArgumentParser):
# for pretrained models
parser.add_argument("--v2", action="store_true", help="load Stable Diffusion v2.0 model / Stable Diffusion 2.0のモデルを読み込む")
parser.add_argument(
"--v_parameterization", action="store_true", help="enable v-parameterization training / v-parameterization学習を有効にする"
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル",
)
parser.add_argument(
"--tokenizer_cache_dir",
type=str,
default=None,
help="directory for caching Tokenizer (for offline training) / Tokenizerをキャッシュするディレクトリ(ネット接続なしでの学習のため)",
)
def add_optimizer_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--optimizer_type",
type=str,
default="",
help="Optimizer to use / オプティマイザの種類: AdamW (default), AdamW8bit, PagedAdamW, PagedAdamW8bit, PagedAdamW32bit, Lion8bit, PagedLion8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation(DAdaptAdamPreprint), DAdaptAdaGrad, DAdaptAdam, DAdaptAdan, DAdaptAdanIP, DAdaptLion, DAdaptSGD, AdaFactor",
)
# backward compatibility
parser.add_argument(
"--use_8bit_adam",
action="store_true",
help="use 8bit AdamW optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)",
)
parser.add_argument(
"--use_lion_optimizer",
action="store_true",
help="use Lion optimizer (requires lion-pytorch) / Lionオプティマイザを使う( lion-pytorch のインストールが必要)",
)
parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
parser.add_argument(
"--max_grad_norm", default=1.0, type=float, help="Max gradient norm, 0 for no clipping / 勾配正規化の最大norm、0でclippingを行わない"
)
parser.add_argument(
"--optimizer_args",
type=str,
default=None,
nargs="*",
help='additional arguments for optimizer (like "weight_decay=0.01 betas=0.9,0.999 ...") / オプティマイザの追加引数(例: "weight_decay=0.01 betas=0.9,0.999 ...")',
)
parser.add_argument("--lr_scheduler_type", type=str, default="", help="custom scheduler module / 使用するスケジューラ")
parser.add_argument(
"--lr_scheduler_args",
type=str,
default=None,
nargs="*",
help='additional arguments for scheduler (like "T_max=100") / スケジューラの追加引数(例: "T_max100")',
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help="scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts, polynomial, constant (default), constant_with_warmup, adafactor",
)
parser.add_argument(
"--lr_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler (default is 0) / 学習率のスケジューラをウォームアップするステップ数(デフォルト0)",
)
parser.add_argument(
"--lr_scheduler_num_cycles",
type=int,
default=1,
help="Number of restarts for cosine scheduler with restarts / cosine with restartsスケジューラでのリスタート回数",
)
parser.add_argument(
"--lr_scheduler_power",
type=float,
default=1,
help="Polynomial power for polynomial scheduler / polynomialスケジューラでのpolynomial power",
)
def add_training_arguments(parser: argparse.ArgumentParser, support_dreambooth: bool):
parser.add_argument("--output_dir", type=str, default=None, help="directory to output trained model / 学習後のモデル出力先ディレクトリ")
parser.add_argument("--output_name", type=str, default=None, help="base name of trained model file / 学習後のモデルの拡張子を除くファイル名")
parser.add_argument(
"--huggingface_repo_id", type=str, default=None, help="huggingface repo name to upload / huggingfaceにアップロードするリポジトリ名"
)
parser.add_argument(
"--huggingface_repo_type", type=str, default=None, help="huggingface repo type to upload / huggingfaceにアップロードするリポジトリの種類"
)
parser.add_argument(
"--huggingface_path_in_repo",
type=str,
default=None,
help="huggingface model path to upload files / huggingfaceにアップロードするファイルのパス",
)
parser.add_argument("--huggingface_token", type=str, default=None, help="huggingface token / huggingfaceのトークン")
parser.add_argument(
"--huggingface_repo_visibility",
type=str,
default=None,
help="huggingface repository visibility ('public' for public, 'private' or None for private) / huggingfaceにアップロードするリポジトリの公開設定('public'で公開、'private'またはNoneで非公開)",
)
parser.add_argument(
"--save_state_to_huggingface", action="store_true", help="save state to huggingface / huggingfaceにstateを保存する"
)
parser.add_argument(
"--resume_from_huggingface",
action="store_true",
help="resume from huggingface (ex: --resume {repo_id}/{path_in_repo}:{revision}:{repo_type}) / huggingfaceから学習を再開する(例: --resume {repo_id}/{path_in_repo}:{revision}:{repo_type})",
)
parser.add_argument(
"--async_upload",
action="store_true",
help="upload to huggingface asynchronously / huggingfaceに非同期でアップロードする",
)
parser.add_argument(
"--save_precision",
type=str,
default=None,
choices=[None, "float", "fp16", "bf16"],
help="precision in saving / 保存時に精度を変更して保存する",
)
parser.add_argument(
"--save_every_n_epochs", type=int, default=None, help="save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存する"
)
parser.add_argument(
"--save_every_n_steps", type=int, default=None, help="save checkpoint every N steps / 学習中のモデルを指定ステップごとに保存する"
)
parser.add_argument(
"--save_n_epoch_ratio",
type=int,
default=None,
help="save checkpoint N epoch ratio (for example 5 means save at least 5 files total) / 学習中のモデルを指定のエポック割合で保存する(たとえば5を指定すると最低5個のファイルが保存される)",
)
parser.add_argument(
"--save_last_n_epochs",
type=int,
default=None,
help="save last N checkpoints when saving every N epochs (remove older checkpoints) / 指定エポックごとにモデルを保存するとき最大Nエポック保存する(古いチェックポイントは削除する)",
)
parser.add_argument(
"--save_last_n_epochs_state",
type=int,
default=None,
help="save last N checkpoints of state (overrides the value of --save_last_n_epochs)/ 最大Nエポックstateを保存する(--save_last_n_epochsの指定を上書きする)",
)
parser.add_argument(
"--save_last_n_steps",
type=int,
default=None,
help="save checkpoints until N steps elapsed (remove older checkpoints if N steps elapsed) / 指定ステップごとにモデルを保存するとき、このステップ数経過するまで保存する(このステップ数経過したら削除する)",
)
parser.add_argument(
"--save_last_n_steps_state",
type=int,
default=None,
help="save states until N steps elapsed (remove older states if N steps elapsed, overrides --save_last_n_steps) / 指定ステップごとにstateを保存するとき、このステップ数経過するまで保存する(このステップ数経過したら削除する。--save_last_n_stepsを上書きする)",
)
parser.add_argument(
"--save_state",
action="store_true",
help="save training state additionally (including optimizer states etc.) / optimizerなど学習状態も含めたstateを追加で保存する",
)
parser.add_argument("--resume", type=str, default=None, help="saved state to resume training / 学習再開するモデルのstate")
parser.add_argument("--train_batch_size", type=int, default=1, help="batch size for training / 学習時のバッチサイズ")
parser.add_argument(
"--max_token_length",
type=int,
default=None,
choices=[None, 150, 225],
help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長(未指定で75、150または225が指定可)",
)
parser.add_argument(
"--mem_eff_attn",
action="store_true",
help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う",
)
parser.add_argument("--xformers", action="store_true", help="use xformers for CrossAttention / CrossAttentionにxformersを使う")
parser.add_argument(
"--sdpa",
action="store_true",
help="use sdpa for CrossAttention (requires PyTorch 2.0) / CrossAttentionにsdpaを使う(PyTorch 2.0が必要)",
)
parser.add_argument(
"--vae", type=str, default=None, help="path to checkpoint of vae to replace / VAEを入れ替える場合、VAEのcheckpointファイルまたはディレクトリ"
)
parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
parser.add_argument(
"--max_train_epochs",
type=int,
default=None,
help="training epochs (overrides max_train_steps) / 学習エポック数(max_train_stepsを上書きします)",
)
parser.add_argument(
"--max_data_loader_n_workers",
type=int,
default=8,
help="max num workers for DataLoader (lower is less main RAM usage, faster epoch start and slower data loading) / DataLoaderの最大プロセス数(小さい値ではメインメモリの使用量が減りエポック間の待ち時間が減りますが、データ読み込みは遅くなります)",
)
parser.add_argument(
"--persistent_data_loader_workers",
action="store_true",
help="persistent DataLoader workers (useful for reduce time gap between epoch, but may use more memory) / DataLoader のワーカーを持続させる (エポック間の時間差を少なくするのに有効だが、より多くのメモリを消費する可能性がある)",
)
parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
parser.add_argument(
"--gradient_checkpointing", action="store_true", help="enable gradient checkpointing / grandient checkpointingを有効にする"
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数",
)
parser.add_argument(
"--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度"
)
parser.add_argument("--full_fp16", action="store_true", help="fp16 training including gradients / 勾配も含めてfp16で学習する")
parser.add_argument(
"--full_bf16", action="store_true", help="bf16 training including gradients / 勾配も含めてbf16で学習する"
) # TODO move to SDXL training, because it is not supported by SD1/2
parser.add_argument(
"--ddp_timeout",
type=int,
default=None,
help="DDP timeout (min, None for default of accelerate) / DDPのタイムアウト(分、Noneでaccelerateのデフォルト)",
)
parser.add_argument(
"--ddp_gradient_as_bucket_view",
action="store_true",
help="enable gradient_as_bucket_view for DDP / DDPでgradient_as_bucket_viewを有効にする",
)
parser.add_argument(
"--ddp_static_graph",
action="store_true",
help="enable static_graph for DDP / DDPでstatic_graphを有効にする",
)
parser.add_argument(
"--clip_skip",
type=int,
default=None,
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)",
)
parser.add_argument(
"--logging_dir",
type=str,
default=None,
help="enable logging and output TensorBoard log to this directory / ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する",
)
parser.add_argument(
"--log_with",
type=str,
default=None,
choices=["tensorboard", "wandb", "all"],
help="what logging tool(s) to use (if 'all', TensorBoard and WandB are both used) / ログ出力に使用するツール (allを指定するとTensorBoardとWandBの両方が使用される)",
)
parser.add_argument("--log_prefix", type=str, default=None, help="add prefix for each log directory / ログディレクトリ名の先頭に追加する文字列")
parser.add_argument(
"--log_tracker_name",
type=str,
default=None,
help="name of tracker to use for logging, default is script-specific default name / ログ出力に使用するtrackerの名前、省略時はスクリプトごとのデフォルト名",
)
parser.add_argument(
"--log_tracker_config",
type=str,
default=None,
help="path to tracker config file to use for logging / ログ出力に使用するtrackerの設定ファイルのパス",
)
parser.add_argument(
"--wandb_api_key",
type=str,
default=None,
help="specify WandB API key to log in before starting training (optional). / WandB APIキーを指定して学習開始前にログインする(オプション)",
)
parser.add_argument(
"--noise_offset",
type=float,
default=None,
help="enable noise offset with this value (if enabled, around 0.1 is recommended) / Noise offsetを有効にしてこの値を設定する(有効にする場合は0.1程度を推奨)",
)
parser.add_argument(
"--multires_noise_iterations",
type=int,
default=None,
help="enable multires noise with this number of iterations (if enabled, around 6-10 is recommended) / Multires noiseを有効にしてこのイテレーション数を設定する(有効にする場合は6-10程度を推奨)",
)
parser.add_argument(
"--ip_noise_gamma",
type=float,
default=None,
help="enable input perturbation noise. used for regularization. recommended value: around 0.1 (from arxiv.org/abs/2301.11706) "
+ "/ input perturbation noiseを有効にする。正則化に使用される。推奨値: 0.1程度 (arxiv.org/abs/2301.11706 より)",
)
# parser.add_argument(
# "--perlin_noise",
# type=int,
# default=None,
# help="enable perlin noise and set the octaves / perlin noiseを有効にしてoctavesをこの値に設定する",
# )
parser.add_argument(
"--multires_noise_discount",
type=float,
default=0.3,
help="set discount value for multires noise (has no effect without --multires_noise_iterations) / Multires noiseのdiscount値を設定する(--multires_noise_iterations指定時のみ有効)",
)
parser.add_argument(
"--adaptive_noise_scale",
type=float,
default=None,
help="add `latent mean absolute value * this value` to noise_offset (disabled if None, default) / latentの平均値の絶対値 * この値をnoise_offsetに加算する(Noneの場合は無効、デフォルト)",
)
parser.add_argument(
"--zero_terminal_snr",
action="store_true",
help="fix noise scheduler betas to enforce zero terminal SNR / noise schedulerのbetasを修正して、zero terminal SNRを強制する",
)
parser.add_argument(
"--min_timestep",
type=int,
default=None,
help="set minimum time step for U-Net training (0~999, default is 0) / U-Net学習時のtime stepの最小値を設定する(0~999で指定、省略時はデフォルト値(0)) ",
)
parser.add_argument(
"--max_timestep",
type=int,
default=None,
help="set maximum time step for U-Net training (1~1000, default is 1000) / U-Net学習時のtime stepの最大値を設定する(1~1000で指定、省略時はデフォルト値(1000))",
)
parser.add_argument(
"--lowram",
action="store_true",
help="enable low RAM optimization. e.g. load models to VRAM instead of RAM (for machines which have bigger VRAM than RAM such as Colab and Kaggle) / メインメモリが少ない環境向け最適化を有効にする。たとえばVRAMにモデルを読み込むなど(ColabやKaggleなどRAMに比べてVRAMが多い環境向け)",
)
parser.add_argument(
"--sample_every_n_steps", type=int, default=None, help="generate sample images every N steps / 学習中のモデルで指定ステップごとにサンプル出力する"
)
parser.add_argument("--sample_at_first", action="store_true", help="generate sample images before training / 学習前にサンプル出力する")
parser.add_argument(
"--sample_every_n_epochs",
type=int,
default=None,
help="generate sample images every N epochs (overwrites n_steps) / 学習中のモデルで指定エポックごとにサンプル出力する(ステップ数指定を上書きします)",
)
parser.add_argument(
"--sample_prompts", type=str, default=None, help="file for prompts to generate sample images / 学習中モデルのサンプル出力用プロンプトのファイル"
)
parser.add_argument(
"--sample_sampler",
type=str,
default="ddim",
choices=[
"ddim",
"pndm",
"lms",
"euler",
"euler_a",
"heun",
"dpm_2",
"dpm_2_a",
"dpmsolver",
"dpmsolver++",
"dpmsingle",
"k_lms",
"k_euler",
"k_euler_a",
"k_dpm_2",
"k_dpm_2_a",
],
help=f"sampler (scheduler) type for sample images / サンプル出力時のサンプラー(スケジューラ)の種類",
)
parser.add_argument(
"--config_file",
type=str,
default=None,
help="using .toml instead of args to pass hyperparameter / ハイパーパラメータを引数ではなく.tomlファイルで渡す",
)
parser.add_argument(
"--output_config", action="store_true", help="output command line args to given .toml file / 引数を.tomlファイルに出力する"
)
# SAI Model spec
parser.add_argument(
"--metadata_title",
type=str,
default=None,
help="title for model metadata (default is output_name) / メタデータに書き込まれるモデルタイトル、省略時はoutput_name",
)
parser.add_argument(
"--metadata_author",
type=str,
default=None,
help="author name for model metadata / メタデータに書き込まれるモデル作者名",
)
parser.add_argument(
"--metadata_description",
type=str,
default=None,
help="description for model metadata / メタデータに書き込まれるモデル説明",
)
parser.add_argument(
"--metadata_license",
type=str,
default=None,
help="license for model metadata / メタデータに書き込まれるモデルライセンス",
)
parser.add_argument(
"--metadata_tags",
type=str,
default=None,
help="tags for model metadata, separated by comma / メタデータに書き込まれるモデルタグ、カンマ区切り",
)
if support_dreambooth:
# DreamBooth training
parser.add_argument(
"--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み"
)
def verify_training_args(args: argparse.Namespace):
if args.v_parameterization and not args.v2:
print("v_parameterization should be with v2 not v1 or sdxl / v1やsdxlでv_parameterizationを使用することは想定されていません")
if args.v2 and args.clip_skip is not None:
print("v2 with clip_skip will be unexpected / v2でclip_skipを使用することは想定されていません")
if args.cache_latents_to_disk and not args.cache_latents:
args.cache_latents = True
print(
"cache_latents_to_disk is enabled, so cache_latents is also enabled / cache_latents_to_diskが有効なため、cache_latentsを有効にします"
)
# noise_offset, perlin_noise, multires_noise_iterations cannot be enabled at the same time
# # Listを使って数えてもいいけど並べてしまえ
# if args.noise_offset is not None and args.multires_noise_iterations is not None:
# raise ValueError(
# "noise_offset and multires_noise_iterations cannot be enabled at the same time / noise_offsetとmultires_noise_iterationsを同時に有効にできません"
# )
# if args.noise_offset is not None and args.perlin_noise is not None:
# raise ValueError("noise_offset and perlin_noise cannot be enabled at the same time / noise_offsetとperlin_noiseは同時に有効にできません")
# if args.perlin_noise is not None and args.multires_noise_iterations is not None:
# raise ValueError(
# "perlin_noise and multires_noise_iterations cannot be enabled at the same time / perlin_noiseとmultires_noise_iterationsを同時に有効にできません"
# )
if args.adaptive_noise_scale is not None and args.noise_offset is None:
raise ValueError("adaptive_noise_scale requires noise_offset / adaptive_noise_scaleを使用するにはnoise_offsetが必要です")
if args.scale_v_pred_loss_like_noise_pred and not args.v_parameterization:
raise ValueError(
"scale_v_pred_loss_like_noise_pred can be enabled only with v_parameterization / scale_v_pred_loss_like_noise_predはv_parameterizationが有効なときのみ有効にできます"
)
if args.v_pred_like_loss and args.v_parameterization:
raise ValueError(
"v_pred_like_loss cannot be enabled with v_parameterization / v_pred_like_lossはv_parameterizationが有効なときには有効にできません"
)
if args.zero_terminal_snr and not args.v_parameterization:
print(
f"zero_terminal_snr is enabled, but v_parameterization is not enabled. training will be unexpected"
+ " / zero_terminal_snrが有効ですが、v_parameterizationが有効ではありません。学習結果は想定外になる可能性があります"
)
def add_dataset_arguments(
parser: argparse.ArgumentParser, support_dreambooth: bool, support_caption: bool, support_caption_dropout: bool
):
# dataset common
parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument("--shuffle_caption", action="store_true", help="shuffle separated caption / 区切られたcaptionの各要素をshuffleする")
parser.add_argument("--caption_separator", type=str, default=",", help="separator for caption / captionの区切り文字")
parser.add_argument(
"--caption_extension", type=str, default=".caption", help="extension of caption files / 読み込むcaptionファイルの拡張子"
)
parser.add_argument(
"--caption_extention",
type=str,
default=None,
help="extension of caption files (backward compatibility) / 読み込むcaptionファイルの拡張子(スペルミスを残してあります)",
)
parser.add_argument(
"--keep_tokens",
type=int,
default=0,
help="keep heading N tokens when shuffling caption tokens (token means comma separated strings) / captionのシャッフル時に、先頭からこの個数のトークンをシャッフルしないで残す(トークンはカンマ区切りの各部分を意味する)",
)
parser.add_argument(
"--keep_tokens_separator",
type=str,
default="",
help="A custom separator to divide the caption into fixed and flexible parts. Tokens before this separator will not be shuffled. If not specified, '--keep_tokens' will be used to determine the fixed number of tokens."
+ " / captionを固定部分と可変部分に分けるためのカスタム区切り文字。この区切り文字より前のトークンはシャッフルされない。指定しない場合、'--keep_tokens'が固定部分のトークン数として使用される。",
)
parser.add_argument(
"--caption_prefix",
type=str,
default=None,
help="prefix for caption text / captionのテキストの先頭に付ける文字列",
)
parser.add_argument(
"--caption_suffix",
type=str,
default=None,
help="suffix for caption text / captionのテキストの末尾に付ける文字列",
)
parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする")
parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする")
parser.add_argument(
"--face_crop_aug_range",
type=str,
default=None,
help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)",
)
parser.add_argument(
"--random_crop",
action="store_true",
help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)",
)
parser.add_argument(
"--debug_dataset", action="store_true", help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)"
)
parser.add_argument(
"--resolution",
type=str,
default=None,
help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)",
)
parser.add_argument(
"--cache_latents",
action="store_true",
help="cache latents to main memory to reduce VRAM usage (augmentations must be disabled) / VRAM削減のためにlatentをメインメモリにcacheする(augmentationは使用不可) ",
)
parser.add_argument("--vae_batch_size", type=int, default=1, help="batch size for caching latents / latentのcache時のバッチサイズ")
parser.add_argument(
"--cache_latents_to_disk",
action="store_true",
help="cache latents to disk to reduce VRAM usage (augmentations must be disabled) / VRAM削減のためにlatentをディスクにcacheする(augmentationは使用不可)",
)
parser.add_argument(
"--enable_bucket", action="store_true", help="enable buckets for multi aspect ratio training / 複数解像度学習のためのbucketを有効にする"
)
parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度")
parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最大解像度")
parser.add_argument(
"--bucket_reso_steps",
type=int,
default=64,
help="steps of resolution for buckets, divisible by 8 is recommended / bucketの解像度の単位、8で割り切れる値を推奨します",
)
parser.add_argument(
"--bucket_no_upscale", action="store_true", help="make bucket for each image without upscaling / 画像を拡大せずbucketを作成します"
)
parser.add_argument(
"--token_warmup_min",
type=int,
default=1,
help="start learning at N tags (token means comma separated strinfloatgs) / タグ数をN個から増やしながら学習する",
)
parser.add_argument(
"--token_warmup_step",
type=float,
default=0,
help="tag length reaches maximum on N steps (or N*max_train_steps if N<1) / N(N<1ならN*max_train_steps)ステップでタグ長が最大になる。デフォルトは0(最初から最大)",
)
parser.add_argument(
"--dataset_class",
type=str,
default=None,
help="dataset class for arbitrary dataset (package.module.Class) / 任意のデータセットを用いるときのクラス名 (package.module.Class)",
)
if support_caption_dropout:
# Textual Inversion はcaptionのdropoutをsupportしない
# いわゆるtensorのDropoutと紛らわしいのでprefixにcaptionを付けておく every_n_epochsは他と平仄を合わせてdefault Noneに
parser.add_argument(
"--caption_dropout_rate", type=float, default=0.0, help="Rate out dropout caption(0.0~1.0) / captionをdropoutする割合"
)
parser.add_argument(
"--caption_dropout_every_n_epochs",
type=int,
default=0,
help="Dropout all captions every N epochs / captionを指定エポックごとにdropoutする",
)
parser.add_argument(
"--caption_tag_dropout_rate",
type=float,
default=0.0,
help="Rate out dropout comma separated tokens(0.0~1.0) / カンマ区切りのタグをdropoutする割合",
)
if support_dreambooth:
# DreamBooth dataset
parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ")
if support_caption:
# caption dataset
parser.add_argument("--in_json", type=str, default=None, help="json metadata for dataset / データセットのmetadataのjsonファイル")
parser.add_argument(
"--dataset_repeats", type=int, default=1, help="repeat dataset when training with captions / キャプションでの学習時にデータセットを繰り返す回数"
)
def add_sd_saving_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--save_model_as",
type=str,
default=None,
choices=[None, "ckpt", "safetensors", "diffusers", "diffusers_safetensors"],
help="format to save the model (default is same to original) / モデル保存時の形式(未指定時は元モデルと同じ)",
)
parser.add_argument(
"--use_safetensors",
action="store_true",
help="use safetensors format to save (if save_model_as is not specified) / checkpoint、モデルをsafetensors形式で保存する(save_model_as未指定時)",
)
def read_config_from_file(args: argparse.Namespace, parser: argparse.ArgumentParser):
if not args.config_file:
return args
config_path = args.config_file + ".toml" if not args.config_file.endswith(".toml") else args.config_file
if args.output_config:
# check if config file exists
if os.path.exists(config_path):
print(f"Config file already exists. Aborting... / 出力先の設定ファイルが既に存在します: {config_path}")
exit(1)
# convert args to dictionary
args_dict = vars(args)
# remove unnecessary keys
for key in ["config_file", "output_config", "wandb_api_key"]:
if key in args_dict:
del args_dict[key]
# get default args from parser
default_args = vars(parser.parse_args([]))
# remove default values: cannot use args_dict.items directly because it will be changed during iteration
for key, value in list(args_dict.items()):
if key in default_args and value == default_args[key]:
del args_dict[key]
# convert Path to str in dictionary
for key, value in args_dict.items():
if isinstance(value, pathlib.Path):
args_dict[key] = str(value)
# convert to toml and output to file
with open(config_path, "w") as f:
toml.dump(args_dict, f)
print(f"Saved config file / 設定ファイルを保存しました: {config_path}")
exit(0)
if not os.path.exists(config_path):
print(f"{config_path} not found.")
exit(1)
print(f"Loading settings from {config_path}...")
with open(config_path, "r") as f:
config_dict = toml.load(f)
# combine all sections into one
ignore_nesting_dict = {}
for section_name, section_dict in config_dict.items():
# if value is not dict, save key and value as is
if not isinstance(section_dict, dict):
ignore_nesting_dict[section_name] = section_dict
continue
# if value is dict, save all key and value into one dict
for key, value in section_dict.items():
ignore_nesting_dict[key] = value
config_args = argparse.Namespace(**ignore_nesting_dict)
args = parser.parse_args(namespace=config_args)
args.config_file = os.path.splitext(args.config_file)[0]
print(args.config_file)
return args
# endregion
# region utils
def resume_from_local_or_hf_if_specified(accelerator, args):
if not args.resume:
return
if not args.resume_from_huggingface:
print(f"resume training from local state: {args.resume}")
accelerator.load_state(args.resume)
return
print(f"resume training from huggingface state: {args.resume}")
repo_id = args.resume.split("/")[0] + "/" + args.resume.split("/")[1]
path_in_repo = "/".join(args.resume.split("/")[2:])
revision = None
repo_type = None
if ":" in path_in_repo:
divided = path_in_repo.split(":")
if len(divided) == 2:
path_in_repo, revision = divided
repo_type = "model"
else:
path_in_repo, revision, repo_type = divided
print(f"Downloading state from huggingface: {repo_id}/{path_in_repo}@{revision}")
list_files = huggingface_util.list_dir(
repo_id=repo_id,
subfolder=path_in_repo,
revision=revision,
token=args.huggingface_token,
repo_type=repo_type,
)
async def download(filename) -> str:
def task():
return hf_hub_download(
repo_id=repo_id,
filename=filename,
revision=revision,
repo_type=repo_type,
token=args.huggingface_token,
)
return await asyncio.get_event_loop().run_in_executor(None, task)
loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*[download(filename=filename.rfilename) for filename in list_files]))
if len(results) == 0:
raise ValueError("No files found in the specified repo id/path/revision / 指定されたリポジトリID/パス/リビジョンにファイルが見つかりませんでした")
dirname = os.path.dirname(results[0])
accelerator.load_state(dirname)
def get_optimizer(args, trainable_params):
# "Optimizer to use: AdamW, AdamW8bit, Lion, SGDNesterov, SGDNesterov8bit, PagedAdamW, PagedAdamW8bit, PagedAdamW32bit, Lion8bit, PagedLion8bit, DAdaptation(DAdaptAdamPreprint), DAdaptAdaGrad, DAdaptAdam, DAdaptAdan, DAdaptAdanIP, DAdaptLion, DAdaptSGD, Adafactor"
optimizer_type = args.optimizer_type
if args.use_8bit_adam:
assert (
not args.use_lion_optimizer
), "both option use_8bit_adam and use_lion_optimizer are specified / use_8bit_adamとuse_lion_optimizerの両方のオプションが指定されています"
assert (
optimizer_type is None or optimizer_type == ""
), "both option use_8bit_adam and optimizer_type are specified / use_8bit_adamとoptimizer_typeの両方のオプションが指定されています"
optimizer_type = "AdamW8bit"
elif args.use_lion_optimizer:
assert (
optimizer_type is None or optimizer_type == ""
), "both option use_lion_optimizer and optimizer_type are specified / use_lion_optimizerとoptimizer_typeの両方のオプションが指定されています"
optimizer_type = "Lion"
if optimizer_type is None or optimizer_type == "":
optimizer_type = "AdamW"
optimizer_type = optimizer_type.lower()
# 引数を分解する
optimizer_kwargs = {}
if args.optimizer_args is not None and len(args.optimizer_args) > 0:
for arg in args.optimizer_args:
key, value = arg.split("=")
value = ast.literal_eval(value)
# value = value.split(",")
# for i in range(len(value)):
# if value[i].lower() == "true" or value[i].lower() == "false":
# value[i] = value[i].lower() == "true"
# else:
# value[i] = ast.float(value[i])
# if len(value) == 1:
# value = value[0]
# else:
# value = tuple(value)
optimizer_kwargs[key] = value
# print("optkwargs:", optimizer_kwargs)
lr = args.learning_rate
optimizer = None
if optimizer_type == "Lion".lower():
try:
import lion_pytorch
except ImportError:
raise ImportError("No lion_pytorch / lion_pytorch がインストールされていないようです")
print(f"use Lion optimizer | {optimizer_kwargs}")
optimizer_class = lion_pytorch.Lion
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type.endswith("8bit".lower()):
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("No bitsandbytes / bitsandbytesがインストールされていないようです")
if optimizer_type == "AdamW8bit".lower():
print(f"use 8-bit AdamW optimizer | {optimizer_kwargs}")
optimizer_class = bnb.optim.AdamW8bit
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type == "SGDNesterov8bit".lower():
print(f"use 8-bit SGD with Nesterov optimizer | {optimizer_kwargs}")
if "momentum" not in optimizer_kwargs:
print(
f"8-bit SGD with Nesterov must be with momentum, set momentum to 0.9 / 8-bit SGD with Nesterovはmomentum指定が必須のため0.9に設定します"
)
optimizer_kwargs["momentum"] = 0.9
optimizer_class = bnb.optim.SGD8bit
optimizer = optimizer_class(trainable_params, lr=lr, nesterov=True, **optimizer_kwargs)
elif optimizer_type == "Lion8bit".lower():
print(f"use 8-bit Lion optimizer | {optimizer_kwargs}")
try:
optimizer_class = bnb.optim.Lion8bit
except AttributeError:
raise AttributeError(
"No Lion8bit. The version of bitsandbytes installed seems to be old. Please install 0.38.0 or later. / Lion8bitが定義されていません。インストールされているbitsandbytesのバージョンが古いようです。0.38.0以上をインストールしてください"
)
elif optimizer_type == "PagedAdamW8bit".lower():
print(f"use 8-bit PagedAdamW optimizer | {optimizer_kwargs}")
try:
optimizer_class = bnb.optim.PagedAdamW8bit
except AttributeError:
raise AttributeError(
"No PagedAdamW8bit. The version of bitsandbytes installed seems to be old. Please install 0.39.0 or later. / PagedAdamW8bitが定義されていません。インストールされているbitsandbytesのバージョンが古いようです。0.39.0以上をインストールしてください"
)
elif optimizer_type == "PagedLion8bit".lower():
print(f"use 8-bit Paged Lion optimizer | {optimizer_kwargs}")
try:
optimizer_class = bnb.optim.PagedLion8bit
except AttributeError:
raise AttributeError(
"No PagedLion8bit. The version of bitsandbytes installed seems to be old. Please install 0.39.0 or later. / PagedLion8bitが定義されていません。インストールされているbitsandbytesのバージョンが古いようです。0.39.0以上をインストールしてください"
)
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type == "PagedAdamW".lower():
print(f"use PagedAdamW optimizer | {optimizer_kwargs}")
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("No bitsandbytes / bitsandbytesがインストールされていないようです")
try:
optimizer_class = bnb.optim.PagedAdamW
except AttributeError:
raise AttributeError(
"No PagedAdamW. The version of bitsandbytes installed seems to be old. Please install 0.39.0 or later. / PagedAdamWが定義されていません。インストールされているbitsandbytesのバージョンが古いようです。0.39.0以上をインストールしてください"
)
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type == "PagedAdamW32bit".lower():
print(f"use 32-bit PagedAdamW optimizer | {optimizer_kwargs}")
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("No bitsandbytes / bitsandbytesがインストールされていないようです")
try:
optimizer_class = bnb.optim.PagedAdamW32bit
except AttributeError:
raise AttributeError(
"No PagedAdamW32bit. The version of bitsandbytes installed seems to be old. Please install 0.39.0 or later. / PagedAdamW32bitが定義されていません。インストールされているbitsandbytesのバージョンが古いようです。0.39.0以上をインストールしてください"
)
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type == "SGDNesterov".lower():
print(f"use SGD with Nesterov optimizer | {optimizer_kwargs}")
if "momentum" not in optimizer_kwargs:
print(f"SGD with Nesterov must be with momentum, set momentum to 0.9 / SGD with Nesterovはmomentum指定が必須のため0.9に設定します")
optimizer_kwargs["momentum"] = 0.9
optimizer_class = torch.optim.SGD
optimizer = optimizer_class(trainable_params, lr=lr, nesterov=True, **optimizer_kwargs)
elif optimizer_type.startswith("DAdapt".lower()) or optimizer_type == "Prodigy".lower():
# check lr and lr_count, and print warning
actual_lr = lr
lr_count = 1
if type(trainable_params) == list and type(trainable_params[0]) == dict:
lrs = set()
actual_lr = trainable_params[0].get("lr", actual_lr)
for group in trainable_params:
lrs.add(group.get("lr", actual_lr))
lr_count = len(lrs)
if actual_lr <= 0.1:
print(
f"learning rate is too low. If using D-Adaptation or Prodigy, set learning rate around 1.0 / 学習率が低すぎるようです。D-AdaptationまたはProdigyの使用時は1.0前後の値を指定してください: lr={actual_lr}"
)
print("recommend option: lr=1.0 / 推奨は1.0です")
if lr_count > 1:
print(
f"when multiple learning rates are specified with dadaptation (e.g. for Text Encoder and U-Net), only the first one will take effect / D-AdaptationまたはProdigyで複数の学習率を指定した場合(Text EncoderとU-Netなど)、最初の学習率のみが有効になります: lr={actual_lr}"
)
if optimizer_type.startswith("DAdapt".lower()):
# DAdaptation family
# check dadaptation is installed
try:
import dadaptation
import dadaptation.experimental as experimental
except ImportError:
raise ImportError("No dadaptation / dadaptation がインストールされていないようです")
# set optimizer
if optimizer_type == "DAdaptation".lower() or optimizer_type == "DAdaptAdamPreprint".lower():
optimizer_class = experimental.DAdaptAdamPreprint
print(f"use D-Adaptation AdamPreprint optimizer | {optimizer_kwargs}")
elif optimizer_type == "DAdaptAdaGrad".lower():
optimizer_class = dadaptation.DAdaptAdaGrad
print(f"use D-Adaptation AdaGrad optimizer | {optimizer_kwargs}")
elif optimizer_type == "DAdaptAdam".lower():
optimizer_class = dadaptation.DAdaptAdam
print(f"use D-Adaptation Adam optimizer | {optimizer_kwargs}")
elif optimizer_type == "DAdaptAdan".lower():
optimizer_class = dadaptation.DAdaptAdan
print(f"use D-Adaptation Adan optimizer | {optimizer_kwargs}")
elif optimizer_type == "DAdaptAdanIP".lower():
optimizer_class = experimental.DAdaptAdanIP
print(f"use D-Adaptation AdanIP optimizer | {optimizer_kwargs}")
elif optimizer_type == "DAdaptLion".lower():
optimizer_class = dadaptation.DAdaptLion
print(f"use D-Adaptation Lion optimizer | {optimizer_kwargs}")
elif optimizer_type == "DAdaptSGD".lower():
optimizer_class = dadaptation.DAdaptSGD
print(f"use D-Adaptation SGD optimizer | {optimizer_kwargs}")
else:
raise ValueError(f"Unknown optimizer type: {optimizer_type}")
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
else:
# Prodigy
# check Prodigy is installed
try:
import prodigyopt
except ImportError:
raise ImportError("No Prodigy / Prodigy がインストールされていないようです")
print(f"use Prodigy optimizer | {optimizer_kwargs}")
optimizer_class = prodigyopt.Prodigy
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type == "Adafactor".lower():
# 引数を確認して適宜補正する
if "relative_step" not in optimizer_kwargs:
optimizer_kwargs["relative_step"] = True # default
if not optimizer_kwargs["relative_step"] and optimizer_kwargs.get("warmup_init", False):
print(f"set relative_step to True because warmup_init is True / warmup_initがTrueのためrelative_stepをTrueにします")
optimizer_kwargs["relative_step"] = True
print(f"use Adafactor optimizer | {optimizer_kwargs}")
if optimizer_kwargs["relative_step"]:
print(f"relative_step is true / relative_stepがtrueです")
if lr != 0.0:
print(f"learning rate is used as initial_lr / 指定したlearning rateはinitial_lrとして使用されます")
args.learning_rate = None
# trainable_paramsがgroupだった時の処理:lrを削除する
if type(trainable_params) == list and type(trainable_params[0]) == dict:
has_group_lr = False
for group in trainable_params:
p = group.pop("lr", None)
has_group_lr = has_group_lr or (p is not None)
if has_group_lr:
# 一応argsを無効にしておく TODO 依存関係が逆転してるのであまり望ましくない
print(f"unet_lr and text_encoder_lr are ignored / unet_lrとtext_encoder_lrは無視されます")
args.unet_lr = None
args.text_encoder_lr = None
if args.lr_scheduler != "adafactor":
print(f"use adafactor_scheduler / スケジューラにadafactor_schedulerを使用します")
args.lr_scheduler = f"adafactor:{lr}" # ちょっと微妙だけど
lr = None
else:
if args.max_grad_norm != 0.0:
print(
f"because max_grad_norm is set, clip_grad_norm is enabled. consider set to 0 / max_grad_normが設定されているためclip_grad_normが有効になります。0に設定して無効にしたほうがいいかもしれません"
)
if args.lr_scheduler != "constant_with_warmup":
print(f"constant_with_warmup will be good / スケジューラはconstant_with_warmupが良いかもしれません")
if optimizer_kwargs.get("clip_threshold", 1.0) != 1.0:
print(f"clip_threshold=1.0 will be good / clip_thresholdは1.0が良いかもしれません")
optimizer_class = transformers.optimization.Adafactor
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type == "AdamW".lower():
print(f"use AdamW optimizer | {optimizer_kwargs}")
optimizer_class = torch.optim.AdamW
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
if optimizer is None:
# 任意のoptimizerを使う
optimizer_type = args.optimizer_type # lowerでないやつ(微妙)
print(f"use {optimizer_type} | {optimizer_kwargs}")
if "." not in optimizer_type:
optimizer_module = torch.optim
else:
values = optimizer_type.split(".")
optimizer_module = importlib.import_module(".".join(values[:-1]))
optimizer_type = values[-1]
optimizer_class = getattr(optimizer_module, optimizer_type)
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
optimizer_name = optimizer_class.__module__ + "." + optimizer_class.__name__
optimizer_args = ",".join([f"{k}={v}" for k, v in optimizer_kwargs.items()])
return optimizer_name, optimizer_args, optimizer
# Modified version of get_scheduler() function from diffusers.optimizer.get_scheduler
# Add some checking and features to the original function.
def get_scheduler_fix(args, optimizer: Optimizer, num_processes: int):
"""
Unified API to get any scheduler from its name.
"""
name = args.lr_scheduler
num_warmup_steps: Optional[int] = args.lr_warmup_steps
num_training_steps = args.max_train_steps * num_processes # * args.gradient_accumulation_steps
num_cycles = args.lr_scheduler_num_cycles
power = args.lr_scheduler_power
lr_scheduler_kwargs = {} # get custom lr_scheduler kwargs
if args.lr_scheduler_args is not None and len(args.lr_scheduler_args) > 0:
for arg in args.lr_scheduler_args:
key, value = arg.split("=")
value = ast.literal_eval(value)
lr_scheduler_kwargs[key] = value
def wrap_check_needless_num_warmup_steps(return_vals):
if num_warmup_steps is not None and num_warmup_steps != 0:
raise ValueError(f"{name} does not require `num_warmup_steps`. Set None or 0.")
return return_vals
# using any lr_scheduler from other library
if args.lr_scheduler_type:
lr_scheduler_type = args.lr_scheduler_type
print(f"use {lr_scheduler_type} | {lr_scheduler_kwargs} as lr_scheduler")
if "." not in lr_scheduler_type: # default to use torch.optim
lr_scheduler_module = torch.optim.lr_scheduler
else:
values = lr_scheduler_type.split(".")
lr_scheduler_module = importlib.import_module(".".join(values[:-1]))
lr_scheduler_type = values[-1]
lr_scheduler_class = getattr(lr_scheduler_module, lr_scheduler_type)
lr_scheduler = lr_scheduler_class(optimizer, **lr_scheduler_kwargs)
return wrap_check_needless_num_warmup_steps(lr_scheduler)
if name.startswith("adafactor"):
assert (
type(optimizer) == transformers.optimization.Adafactor
), f"adafactor scheduler must be used with Adafactor optimizer / adafactor schedulerはAdafactorオプティマイザと同時に使ってください"
initial_lr = float(name.split(":")[1])
# print("adafactor scheduler init lr", initial_lr)
return wrap_check_needless_num_warmup_steps(transformers.optimization.AdafactorSchedule(optimizer, initial_lr))
name = SchedulerType(name)
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return wrap_check_needless_num_warmup_steps(schedule_func(optimizer, **lr_scheduler_kwargs))
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(optimizer, **lr_scheduler_kwargs) # step_rules and last_epoch are given as kwargs
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, **lr_scheduler_kwargs)
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
**lr_scheduler_kwargs,
)
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, power=power, **lr_scheduler_kwargs
)
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, **lr_scheduler_kwargs)
def prepare_dataset_args(args: argparse.Namespace, support_metadata: bool):
# backward compatibility
if args.caption_extention is not None:
args.caption_extension = args.caption_extention
args.caption_extention = None
# assert args.resolution is not None, f"resolution is required / resolution(解像度)を指定してください"
if args.resolution is not None:
args.resolution = tuple([int(r) for r in args.resolution.split(",")])
if len(args.resolution) == 1:
args.resolution = (args.resolution[0], args.resolution[0])
assert (
len(args.resolution) == 2
), f"resolution must be 'size' or 'width,height' / resolution(解像度)は'サイズ'または'幅','高さ'で指定してください: {args.resolution}"
if args.face_crop_aug_range is not None:
args.face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(",")])
assert (
len(args.face_crop_aug_range) == 2 and args.face_crop_aug_range[0] <= args.face_crop_aug_range[1]
), f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}"
else:
args.face_crop_aug_range = None
if support_metadata:
if args.in_json is not None and (args.color_aug or args.random_crop):
print(
f"latents in npz is ignored when color_aug or random_crop is True / color_augまたはrandom_cropを有効にした場合、npzファイルのlatentsは無視されます"
)
def load_tokenizer(args: argparse.Namespace):
print("prepare tokenizer")
original_path = V2_STABLE_DIFFUSION_PATH if args.v2 else TOKENIZER_PATH
tokenizer: CLIPTokenizer = None
if args.tokenizer_cache_dir:
local_tokenizer_path = os.path.join(args.tokenizer_cache_dir, original_path.replace("/", "_"))
if os.path.exists(local_tokenizer_path):
print(f"load tokenizer from cache: {local_tokenizer_path}")
tokenizer = CLIPTokenizer.from_pretrained(local_tokenizer_path) # same for v1 and v2
if tokenizer is None:
if args.v2:
tokenizer = CLIPTokenizer.from_pretrained(original_path, subfolder="tokenizer")
else:
tokenizer = CLIPTokenizer.from_pretrained(original_path)
if hasattr(args, "max_token_length") and args.max_token_length is not None:
print(f"update token length: {args.max_token_length}")
if args.tokenizer_cache_dir and not os.path.exists(local_tokenizer_path):
print(f"save Tokenizer to cache: {local_tokenizer_path}")
tokenizer.save_pretrained(local_tokenizer_path)
return tokenizer
def prepare_accelerator(args: argparse.Namespace):
if args.logging_dir is None:
logging_dir = None
else:
log_prefix = "" if args.log_prefix is None else args.log_prefix
logging_dir = args.logging_dir + "/" + log_prefix + time.strftime("%Y%m%d%H%M%S", time.localtime())
if args.log_with is None:
if logging_dir is not None:
log_with = "tensorboard"
else:
log_with = None
else:
log_with = args.log_with
if log_with in ["tensorboard", "all"]:
if logging_dir is None:
raise ValueError("logging_dir is required when log_with is tensorboard / Tensorboardを使う場合、logging_dirを指定してください")
if log_with in ["wandb", "all"]:
try:
import wandb
except ImportError:
raise ImportError("No wandb / wandb がインストールされていないようです")
if logging_dir is not None:
os.makedirs(logging_dir, exist_ok=True)
os.environ["WANDB_DIR"] = logging_dir
if args.wandb_api_key is not None:
wandb.login(key=args.wandb_api_key)
kwargs_handlers = (
InitProcessGroupKwargs(timeout=datetime.timedelta(minutes=args.ddp_timeout)) if args.ddp_timeout else None,
DistributedDataParallelKwargs(gradient_as_bucket_view=args.ddp_gradient_as_bucket_view, static_graph=args.ddp_static_graph)
if args.ddp_gradient_as_bucket_view or args.ddp_static_graph
else None,
)
kwargs_handlers = list(filter(lambda x: x is not None, kwargs_handlers))
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=log_with,
project_dir=logging_dir,
kwargs_handlers=kwargs_handlers,
)
return accelerator
def prepare_dtype(args: argparse.Namespace):
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
save_dtype = None
if args.save_precision == "fp16":
save_dtype = torch.float16
elif args.save_precision == "bf16":
save_dtype = torch.bfloat16
elif args.save_precision == "float":
save_dtype = torch.float32
return weight_dtype, save_dtype
def _load_target_model(args: argparse.Namespace, weight_dtype, device="cpu", unet_use_linear_projection_in_v2=False):
name_or_path = args.pretrained_model_name_or_path
name_or_path = os.path.realpath(name_or_path) if os.path.islink(name_or_path) else name_or_path
load_stable_diffusion_format = os.path.isfile(name_or_path) # determine SD or Diffusers
if load_stable_diffusion_format:
print(f"load StableDiffusion checkpoint: {name_or_path}")
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(
args.v2, name_or_path, device, unet_use_linear_projection_in_v2=unet_use_linear_projection_in_v2
)
else:
# Diffusers model is loaded to CPU
print(f"load Diffusers pretrained models: {name_or_path}")
try:
pipe = StableDiffusionPipeline.from_pretrained(name_or_path, tokenizer=None, safety_checker=None)
except EnvironmentError as ex:
print(
f"model is not found as a file or in Hugging Face, perhaps file name is wrong? / 指定したモデル名のファイル、またはHugging Faceのモデルが見つかりません。ファイル名が誤っているかもしれません: {name_or_path}"
)
raise ex
text_encoder = pipe.text_encoder
vae = pipe.vae
unet = pipe.unet
del pipe
# Diffusers U-Net to original U-Net
# TODO *.ckpt/*.safetensorsのv2と同じ形式にここで変換すると良さそう
# print(f"unet config: {unet.config}")
original_unet = UNet2DConditionModel(
unet.config.sample_size,
unet.config.attention_head_dim,
unet.config.cross_attention_dim,
unet.config.use_linear_projection,
unet.config.upcast_attention,
)
original_unet.load_state_dict(unet.state_dict())
unet = original_unet
print("U-Net converted to original U-Net")
# VAEを読み込む
if args.vae is not None:
vae = model_util.load_vae(args.vae, weight_dtype)
print("additional VAE loaded")
return text_encoder, vae, unet, load_stable_diffusion_format
def load_target_model(args, weight_dtype, accelerator, unet_use_linear_projection_in_v2=False):
# load models for each process
for pi in range(accelerator.state.num_processes):
if pi == accelerator.state.local_process_index:
print(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}")
text_encoder, vae, unet, load_stable_diffusion_format = _load_target_model(
args,
weight_dtype,
accelerator.device if args.lowram else "cpu",
unet_use_linear_projection_in_v2=unet_use_linear_projection_in_v2,
)
# work on low-ram device
if args.lowram:
text_encoder.to(accelerator.device)
unet.to(accelerator.device)
vae.to(accelerator.device)
gc.collect()
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
return text_encoder, vae, unet, load_stable_diffusion_format
def patch_accelerator_for_fp16_training(accelerator):
org_unscale_grads = accelerator.scaler._unscale_grads_
def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16):
return org_unscale_grads(optimizer, inv_scale, found_inf, True)
accelerator.scaler._unscale_grads_ = _unscale_grads_replacer
def get_hidden_states(args: argparse.Namespace, input_ids, tokenizer, text_encoder, weight_dtype=None):
# with no_token_padding, the length is not max length, return result immediately
if input_ids.size()[-1] != tokenizer.model_max_length:
return text_encoder(input_ids)[0]
# input_ids: b,n,77
b_size = input_ids.size()[0]
input_ids = input_ids.reshape((-1, tokenizer.model_max_length)) # batch_size*3, 77
if args.clip_skip is None:
encoder_hidden_states = text_encoder(input_ids)[0]
else:
enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True)
encoder_hidden_states = enc_out["hidden_states"][-args.clip_skip]
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
# bs*3, 77, 768 or 1024
encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1]))
if args.max_token_length is not None:
if args.v2:
# v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
states_list = [encoder_hidden_states[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, args.max_token_length, tokenizer.model_max_length):
chunk = encoder_hidden_states[:, i : i + tokenizer.model_max_length - 2] # <BOS> の後から 最後の前まで
if i > 0:
for j in range(len(chunk)):
if input_ids[j, 1] == tokenizer.eos_token: # 空、つまり <BOS> <EOS> <PAD> ...のパターン
chunk[j, 0] = chunk[j, 1] # 次の <PAD> の値をコピーする
states_list.append(chunk) # <BOS> の後から <EOS> の前まで
states_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) # <EOS> か <PAD> のどちらか
encoder_hidden_states = torch.cat(states_list, dim=1)
else:
# v1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
states_list = [encoder_hidden_states[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, args.max_token_length, tokenizer.model_max_length):
states_list.append(encoder_hidden_states[:, i : i + tokenizer.model_max_length - 2]) # <BOS> の後から <EOS> の前まで
states_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) # <EOS>
encoder_hidden_states = torch.cat(states_list, dim=1)
if weight_dtype is not None:
# this is required for additional network training
encoder_hidden_states = encoder_hidden_states.to(weight_dtype)
return encoder_hidden_states
def pool_workaround(
text_encoder: CLIPTextModelWithProjection, last_hidden_state: torch.Tensor, input_ids: torch.Tensor, eos_token_id: int
):
r"""
workaround for CLIP's pooling bug: it returns the hidden states for the max token id as the pooled output
instead of the hidden states for the EOS token
If we use Textual Inversion, we need to use the hidden states for the EOS token as the pooled output
Original code from CLIP's pooling function:
\# text_embeds.shape = [batch_size, sequence_length, transformer.width]
\# take features from the eot embedding (eot_token is the highest number in each sequence)
\# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
]
"""
# input_ids: b*n,77
# find index for EOS token
# Following code is not working if one of the input_ids has multiple EOS tokens (very odd case)
# eos_token_index = torch.where(input_ids == eos_token_id)[1]
# eos_token_index = eos_token_index.to(device=last_hidden_state.device)
# Create a mask where the EOS tokens are
eos_token_mask = (input_ids == eos_token_id).int()
# Use argmax to find the last index of the EOS token for each element in the batch
eos_token_index = torch.argmax(eos_token_mask, dim=1) # this will be 0 if there is no EOS token, it's fine
eos_token_index = eos_token_index.to(device=last_hidden_state.device)
# get hidden states for EOS token
pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), eos_token_index]
# apply projection: projection may be of different dtype than last_hidden_state
pooled_output = text_encoder.text_projection(pooled_output.to(text_encoder.text_projection.weight.dtype))
pooled_output = pooled_output.to(last_hidden_state.dtype)
return pooled_output
def get_hidden_states_sdxl(
max_token_length: int,
input_ids1: torch.Tensor,
input_ids2: torch.Tensor,
tokenizer1: CLIPTokenizer,
tokenizer2: CLIPTokenizer,
text_encoder1: CLIPTextModel,
text_encoder2: CLIPTextModelWithProjection,
weight_dtype: Optional[str] = None,
accelerator: Optional[Accelerator] = None,
):
# input_ids: b,n,77 -> b*n, 77
b_size = input_ids1.size()[0]
input_ids1 = input_ids1.reshape((-1, tokenizer1.model_max_length)) # batch_size*n, 77
input_ids2 = input_ids2.reshape((-1, tokenizer2.model_max_length)) # batch_size*n, 77
# text_encoder1
enc_out = text_encoder1(input_ids1, output_hidden_states=True, return_dict=True)
hidden_states1 = enc_out["hidden_states"][11]
# text_encoder2
enc_out = text_encoder2(input_ids2, output_hidden_states=True, return_dict=True)
hidden_states2 = enc_out["hidden_states"][-2] # penuultimate layer
# pool2 = enc_out["text_embeds"]
unwrapped_text_encoder2 = text_encoder2 if accelerator is None else accelerator.unwrap_model(text_encoder2)
pool2 = pool_workaround(unwrapped_text_encoder2, enc_out["last_hidden_state"], input_ids2, tokenizer2.eos_token_id)
# b*n, 77, 768 or 1280 -> b, n*77, 768 or 1280
n_size = 1 if max_token_length is None else max_token_length // 75
hidden_states1 = hidden_states1.reshape((b_size, -1, hidden_states1.shape[-1]))
hidden_states2 = hidden_states2.reshape((b_size, -1, hidden_states2.shape[-1]))
if max_token_length is not None:
# bs*3, 77, 768 or 1024
# encoder1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
states_list = [hidden_states1[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, max_token_length, tokenizer1.model_max_length):
states_list.append(hidden_states1[:, i : i + tokenizer1.model_max_length - 2]) # <BOS> の後から <EOS> の前まで
states_list.append(hidden_states1[:, -1].unsqueeze(1)) # <EOS>
hidden_states1 = torch.cat(states_list, dim=1)
# v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
states_list = [hidden_states2[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, max_token_length, tokenizer2.model_max_length):
chunk = hidden_states2[:, i : i + tokenizer2.model_max_length - 2] # <BOS> の後から 最後の前まで
# this causes an error:
# RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
# if i > 1:
# for j in range(len(chunk)): # batch_size
# if input_ids2[n_index + j * n_size, 1] == tokenizer2.eos_token_id: # 空、つまり <BOS> <EOS> <PAD> ...のパターン
# chunk[j, 0] = chunk[j, 1] # 次の <PAD> の値をコピーする
states_list.append(chunk) # <BOS> の後から <EOS> の前まで
states_list.append(hidden_states2[:, -1].unsqueeze(1)) # <EOS> か <PAD> のどちらか
hidden_states2 = torch.cat(states_list, dim=1)
# pool はnの最初のものを使う
pool2 = pool2[::n_size]
if weight_dtype is not None:
# this is required for additional network training
hidden_states1 = hidden_states1.to(weight_dtype)
hidden_states2 = hidden_states2.to(weight_dtype)
return hidden_states1, hidden_states2, pool2
def default_if_none(value, default):
return default if value is None else value
def get_epoch_ckpt_name(args: argparse.Namespace, ext: str, epoch_no: int):
model_name = default_if_none(args.output_name, DEFAULT_EPOCH_NAME)
return EPOCH_FILE_NAME.format(model_name, epoch_no) + ext
def get_step_ckpt_name(args: argparse.Namespace, ext: str, step_no: int):
model_name = default_if_none(args.output_name, DEFAULT_STEP_NAME)
return STEP_FILE_NAME.format(model_name, step_no) + ext
def get_last_ckpt_name(args: argparse.Namespace, ext: str):
model_name = default_if_none(args.output_name, DEFAULT_LAST_OUTPUT_NAME)
return model_name + ext
def get_remove_epoch_no(args: argparse.Namespace, epoch_no: int):
if args.save_last_n_epochs is None:
return None
remove_epoch_no = epoch_no - args.save_every_n_epochs * args.save_last_n_epochs
if remove_epoch_no < 0:
return None
return remove_epoch_no
def get_remove_step_no(args: argparse.Namespace, step_no: int):
if args.save_last_n_steps is None:
return None
# last_n_steps前のstep_noから、save_every_n_stepsの倍数のstep_noを計算して削除する
# save_every_n_steps=10, save_last_n_steps=30の場合、50step目には30step分残し、10step目を削除する
remove_step_no = step_no - args.save_last_n_steps - 1
remove_step_no = remove_step_no - (remove_step_no % args.save_every_n_steps)
if remove_step_no < 0:
return None
return remove_step_no
# epochとstepの保存、メタデータにepoch/stepが含まれ引数が同じになるため、統合している
# on_epoch_end: Trueならepoch終了時、Falseならstep経過時
def save_sd_model_on_epoch_end_or_stepwise(
args: argparse.Namespace,
on_epoch_end: bool,
accelerator,
src_path: str,
save_stable_diffusion_format: bool,
use_safetensors: bool,
save_dtype: torch.dtype,
epoch: int,
num_train_epochs: int,
global_step: int,
text_encoder,
unet,
vae,
):
def sd_saver(ckpt_file, epoch_no, global_step):
sai_metadata = get_sai_model_spec(None, args, False, False, False, is_stable_diffusion_ckpt=True)
model_util.save_stable_diffusion_checkpoint(
args.v2, ckpt_file, text_encoder, unet, src_path, epoch_no, global_step, sai_metadata, save_dtype, vae
)
def diffusers_saver(out_dir):
model_util.save_diffusers_checkpoint(
args.v2, out_dir, text_encoder, unet, src_path, vae=vae, use_safetensors=use_safetensors
)
save_sd_model_on_epoch_end_or_stepwise_common(
args,
on_epoch_end,
accelerator,
save_stable_diffusion_format,
use_safetensors,
epoch,
num_train_epochs,
global_step,
sd_saver,
diffusers_saver,
)
def save_sd_model_on_epoch_end_or_stepwise_common(
args: argparse.Namespace,
on_epoch_end: bool,
accelerator,
save_stable_diffusion_format: bool,
use_safetensors: bool,
epoch: int,
num_train_epochs: int,
global_step: int,
sd_saver,
diffusers_saver,
):
if on_epoch_end:
epoch_no = epoch + 1
saving = epoch_no % args.save_every_n_epochs == 0 and epoch_no < num_train_epochs
if not saving:
return
model_name = default_if_none(args.output_name, DEFAULT_EPOCH_NAME)
remove_no = get_remove_epoch_no(args, epoch_no)
else:
# 保存するか否かは呼び出し側で判断済み
model_name = default_if_none(args.output_name, DEFAULT_STEP_NAME)
epoch_no = epoch # 例: 最初のepochの途中で保存したら0になる、SDモデルに保存される
remove_no = get_remove_step_no(args, global_step)
os.makedirs(args.output_dir, exist_ok=True)
if save_stable_diffusion_format:
ext = ".safetensors" if use_safetensors else ".ckpt"
if on_epoch_end:
ckpt_name = get_epoch_ckpt_name(args, ext, epoch_no)
else:
ckpt_name = get_step_ckpt_name(args, ext, global_step)
ckpt_file = os.path.join(args.output_dir, ckpt_name)
print(f"\nsaving checkpoint: {ckpt_file}")
sd_saver(ckpt_file, epoch_no, global_step)
if args.huggingface_repo_id is not None:
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name)
# remove older checkpoints
if remove_no is not None:
if on_epoch_end:
remove_ckpt_name = get_epoch_ckpt_name(args, ext, remove_no)
else:
remove_ckpt_name = get_step_ckpt_name(args, ext, remove_no)
remove_ckpt_file = os.path.join(args.output_dir, remove_ckpt_name)
if os.path.exists(remove_ckpt_file):
print(f"removing old checkpoint: {remove_ckpt_file}")
os.remove(remove_ckpt_file)
else:
if on_epoch_end:
out_dir = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(model_name, epoch_no))
else:
out_dir = os.path.join(args.output_dir, STEP_DIFFUSERS_DIR_NAME.format(model_name, global_step))
print(f"\nsaving model: {out_dir}")
diffusers_saver(out_dir)
if args.huggingface_repo_id is not None:
huggingface_util.upload(args, out_dir, "/" + model_name)
# remove older checkpoints
if remove_no is not None:
if on_epoch_end:
remove_out_dir = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(model_name, remove_no))
else:
remove_out_dir = os.path.join(args.output_dir, STEP_DIFFUSERS_DIR_NAME.format(model_name, remove_no))
if os.path.exists(remove_out_dir):
print(f"removing old model: {remove_out_dir}")
shutil.rmtree(remove_out_dir)
if args.save_state:
if on_epoch_end:
save_and_remove_state_on_epoch_end(args, accelerator, epoch_no)
else:
save_and_remove_state_stepwise(args, accelerator, global_step)
def save_and_remove_state_on_epoch_end(args: argparse.Namespace, accelerator, epoch_no):
model_name = default_if_none(args.output_name, DEFAULT_EPOCH_NAME)
print(f"\nsaving state at epoch {epoch_no}")
os.makedirs(args.output_dir, exist_ok=True)
state_dir = os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, epoch_no))
accelerator.save_state(state_dir)
if args.save_state_to_huggingface:
print("uploading state to huggingface.")
huggingface_util.upload(args, state_dir, "/" + EPOCH_STATE_NAME.format(model_name, epoch_no))
last_n_epochs = args.save_last_n_epochs_state if args.save_last_n_epochs_state else args.save_last_n_epochs
if last_n_epochs is not None:
remove_epoch_no = epoch_no - args.save_every_n_epochs * last_n_epochs
state_dir_old = os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, remove_epoch_no))
if os.path.exists(state_dir_old):
print(f"removing old state: {state_dir_old}")
shutil.rmtree(state_dir_old)
def save_and_remove_state_stepwise(args: argparse.Namespace, accelerator, step_no):
model_name = default_if_none(args.output_name, DEFAULT_STEP_NAME)
print(f"\nsaving state at step {step_no}")
os.makedirs(args.output_dir, exist_ok=True)
state_dir = os.path.join(args.output_dir, STEP_STATE_NAME.format(model_name, step_no))
accelerator.save_state(state_dir)
if args.save_state_to_huggingface:
print("uploading state to huggingface.")
huggingface_util.upload(args, state_dir, "/" + STEP_STATE_NAME.format(model_name, step_no))
last_n_steps = args.save_last_n_steps_state if args.save_last_n_steps_state else args.save_last_n_steps
if last_n_steps is not None:
# last_n_steps前のstep_noから、save_every_n_stepsの倍数のstep_noを計算して削除する
remove_step_no = step_no - last_n_steps - 1
remove_step_no = remove_step_no - (remove_step_no % args.save_every_n_steps)
if remove_step_no > 0:
state_dir_old = os.path.join(args.output_dir, STEP_STATE_NAME.format(model_name, remove_step_no))
if os.path.exists(state_dir_old):
print(f"removing old state: {state_dir_old}")
shutil.rmtree(state_dir_old)
def save_state_on_train_end(args: argparse.Namespace, accelerator):
model_name = default_if_none(args.output_name, DEFAULT_LAST_OUTPUT_NAME)
print("\nsaving last state.")
os.makedirs(args.output_dir, exist_ok=True)
state_dir = os.path.join(args.output_dir, LAST_STATE_NAME.format(model_name))
accelerator.save_state(state_dir)
if args.save_state_to_huggingface:
print("uploading last state to huggingface.")
huggingface_util.upload(args, state_dir, "/" + LAST_STATE_NAME.format(model_name))
def save_sd_model_on_train_end(
args: argparse.Namespace,
src_path: str,
save_stable_diffusion_format: bool,
use_safetensors: bool,
save_dtype: torch.dtype,
epoch: int,
global_step: int,
text_encoder,
unet,
vae,
):
def sd_saver(ckpt_file, epoch_no, global_step):
sai_metadata = get_sai_model_spec(None, args, False, False, False, is_stable_diffusion_ckpt=True)
model_util.save_stable_diffusion_checkpoint(
args.v2, ckpt_file, text_encoder, unet, src_path, epoch_no, global_step, sai_metadata, save_dtype, vae
)
def diffusers_saver(out_dir):
model_util.save_diffusers_checkpoint(
args.v2, out_dir, text_encoder, unet, src_path, vae=vae, use_safetensors=use_safetensors
)
save_sd_model_on_train_end_common(
args, save_stable_diffusion_format, use_safetensors, epoch, global_step, sd_saver, diffusers_saver
)
def save_sd_model_on_train_end_common(
args: argparse.Namespace,
save_stable_diffusion_format: bool,
use_safetensors: bool,
epoch: int,
global_step: int,
sd_saver,
diffusers_saver,
):
model_name = default_if_none(args.output_name, DEFAULT_LAST_OUTPUT_NAME)
if save_stable_diffusion_format:
os.makedirs(args.output_dir, exist_ok=True)
ckpt_name = model_name + (".safetensors" if use_safetensors else ".ckpt")
ckpt_file = os.path.join(args.output_dir, ckpt_name)
print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}")
sd_saver(ckpt_file, epoch, global_step)
if args.huggingface_repo_id is not None:
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=True)
else:
out_dir = os.path.join(args.output_dir, model_name)
os.makedirs(out_dir, exist_ok=True)
print(f"save trained model as Diffusers to {out_dir}")
diffusers_saver(out_dir)
if args.huggingface_repo_id is not None:
huggingface_util.upload(args, out_dir, "/" + model_name, force_sync_upload=True)
def get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents):
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
if args.noise_offset:
noise = custom_train_functions.apply_noise_offset(latents, noise, args.noise_offset, args.adaptive_noise_scale)
if args.multires_noise_iterations:
noise = custom_train_functions.pyramid_noise_like(
noise, latents.device, args.multires_noise_iterations, args.multires_noise_discount
)
# Sample a random timestep for each image
b_size = latents.shape[0]
min_timestep = 0 if args.min_timestep is None else args.min_timestep
max_timestep = noise_scheduler.config.num_train_timesteps if args.max_timestep is None else args.max_timestep
timesteps = torch.randint(min_timestep, max_timestep, (b_size,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
if args.ip_noise_gamma:
noisy_latents = noise_scheduler.add_noise(latents, noise + args.ip_noise_gamma * torch.randn_like(latents), timesteps)
else:
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
return noise, noisy_latents, timesteps
def append_lr_to_logs(logs, lr_scheduler, optimizer_type, including_unet=True):
names = []
if including_unet:
names.append("unet")
names.append("text_encoder1")
names.append("text_encoder2")
append_lr_to_logs_with_names(logs, lr_scheduler, optimizer_type, names)
def append_lr_to_logs_with_names(logs, lr_scheduler, optimizer_type, names):
lrs = lr_scheduler.get_last_lr()
for lr_index in range(len(lrs)):
name = names[lr_index]
logs["lr/" + name] = float(lrs[lr_index])
if optimizer_type.lower().startswith("DAdapt".lower()) or optimizer_type.lower() == "Prodigy".lower():
logs["lr/d*lr/" + name] = (
lr_scheduler.optimizers[-1].param_groups[lr_index]["d"] * lr_scheduler.optimizers[-1].param_groups[lr_index]["lr"]
)
# scheduler:
SCHEDULER_LINEAR_START = 0.00085
SCHEDULER_LINEAR_END = 0.0120
SCHEDULER_TIMESTEPS = 1000
SCHEDLER_SCHEDULE = "scaled_linear"
def get_my_scheduler(
*,
sample_sampler: str,
v_parameterization: bool,
):
sched_init_args = {}
if sample_sampler == "ddim":
scheduler_cls = DDIMScheduler
elif sample_sampler == "ddpm": # ddpmはおかしくなるのでoptionから外してある
scheduler_cls = DDPMScheduler
elif sample_sampler == "pndm":
scheduler_cls = PNDMScheduler
elif sample_sampler == "lms" or sample_sampler == "k_lms":
scheduler_cls = LMSDiscreteScheduler
elif sample_sampler == "euler" or sample_sampler == "k_euler":
scheduler_cls = EulerDiscreteScheduler
elif sample_sampler == "euler_a" or sample_sampler == "k_euler_a":
scheduler_cls = EulerAncestralDiscreteScheduler
elif sample_sampler == "dpmsolver" or sample_sampler == "dpmsolver++":
scheduler_cls = DPMSolverMultistepScheduler
sched_init_args["algorithm_type"] = sample_sampler
elif sample_sampler == "dpmsingle":
scheduler_cls = DPMSolverSinglestepScheduler
elif sample_sampler == "heun":
scheduler_cls = HeunDiscreteScheduler
elif sample_sampler == "dpm_2" or sample_sampler == "k_dpm_2":
scheduler_cls = KDPM2DiscreteScheduler
elif sample_sampler == "dpm_2_a" or sample_sampler == "k_dpm_2_a":
scheduler_cls = KDPM2AncestralDiscreteScheduler
else:
scheduler_cls = DDIMScheduler
if v_parameterization:
sched_init_args["prediction_type"] = "v_prediction"
scheduler = scheduler_cls(
num_train_timesteps=SCHEDULER_TIMESTEPS,
beta_start=SCHEDULER_LINEAR_START,
beta_end=SCHEDULER_LINEAR_END,
beta_schedule=SCHEDLER_SCHEDULE,
**sched_init_args,
)
# clip_sample=Trueにする
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is False:
# print("set clip_sample to True")
scheduler.config.clip_sample = True
return scheduler
def sample_images(*args, **kwargs):
return sample_images_common(StableDiffusionLongPromptWeightingPipeline, *args, **kwargs)
def line_to_prompt_dict(line: str) -> dict:
# subset of gen_img_diffusers
prompt_args = line.split(" --")
prompt_dict = {}
prompt_dict["prompt"] = prompt_args[0]
for parg in prompt_args:
try:
m = re.match(r"w (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["width"] = int(m.group(1))
continue
m = re.match(r"h (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["height"] = int(m.group(1))
continue
m = re.match(r"d (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["seed"] = int(m.group(1))
continue
m = re.match(r"s (\d+)", parg, re.IGNORECASE)
if m: # steps
prompt_dict["sample_steps"] = max(1, min(1000, int(m.group(1))))
continue
m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE)
if m: # scale
prompt_dict["scale"] = float(m.group(1))
continue
m = re.match(r"n (.+)", parg, re.IGNORECASE)
if m: # negative prompt
prompt_dict["negative_prompt"] = m.group(1)
continue
m = re.match(r"ss (.+)", parg, re.IGNORECASE)
if m:
prompt_dict["sample_sampler"] = m.group(1)
continue
m = re.match(r"cn (.+)", parg, re.IGNORECASE)
if m:
prompt_dict["controlnet_image"] = m.group(1)
continue
except ValueError as ex:
print(f"Exception in parsing / 解析エラー: {parg}")
print(ex)
return prompt_dict
def sample_images_common(
pipe_class,
accelerator: Accelerator,
args: argparse.Namespace,
epoch,
steps,
device,
vae,
tokenizer,
text_encoder,
unet,
prompt_replacement=None,
controlnet=None,
):
"""
StableDiffusionLongPromptWeightingPipelineの改造版を使うようにしたので、clip skipおよびプロンプトの重みづけに対応した
"""
if steps == 0:
if not args.sample_at_first:
return
else:
if args.sample_every_n_steps is None and args.sample_every_n_epochs is None:
return
if args.sample_every_n_epochs is not None:
# sample_every_n_steps は無視する
if epoch is None or epoch % args.sample_every_n_epochs != 0:
return
else:
if steps % args.sample_every_n_steps != 0 or epoch is not None: # steps is not divisible or end of epoch
return
print(f"\ngenerating sample images at step / サンプル画像生成 ステップ: {steps}")
if not os.path.isfile(args.sample_prompts):
print(f"No prompt file / プロンプトファイルがありません: {args.sample_prompts}")
return
org_vae_device = vae.device # CPUにいるはず
vae.to(device)
# unwrap unet and text_encoder(s)
unet = accelerator.unwrap_model(unet)
if isinstance(text_encoder, (list, tuple)):
text_encoder = [accelerator.unwrap_model(te) for te in text_encoder]
else:
text_encoder = accelerator.unwrap_model(text_encoder)
# read prompts
# with open(args.sample_prompts, "rt", encoding="utf-8") as f:
# prompts = f.readlines()
if args.sample_prompts.endswith(".txt"):
with open(args.sample_prompts, "r", encoding="utf-8") as f:
lines = f.readlines()
prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
elif args.sample_prompts.endswith(".toml"):
with open(args.sample_prompts, "r", encoding="utf-8") as f:
data = toml.load(f)
prompts = [dict(**data["prompt"], **subset) for subset in data["prompt"]["subset"]]
elif args.sample_prompts.endswith(".json"):
with open(args.sample_prompts, "r", encoding="utf-8") as f:
prompts = json.load(f)
schedulers: dict = {}
default_scheduler = get_my_scheduler(
sample_sampler=args.sample_sampler,
v_parameterization=args.v_parameterization,
)
schedulers[args.sample_sampler] = default_scheduler
pipeline = pipe_class(
text_encoder=text_encoder,
vae=vae,
unet=unet,
tokenizer=tokenizer,
scheduler=default_scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
clip_skip=args.clip_skip,
)
pipeline.to(device)
save_dir = args.output_dir + "/sample"
os.makedirs(save_dir, exist_ok=True)
rng_state = torch.get_rng_state()
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
with torch.no_grad():
# with accelerator.autocast():
for i, prompt_dict in enumerate(prompts):
if not accelerator.is_main_process:
continue
if isinstance(prompt_dict, str):
prompt_dict = line_to_prompt_dict(prompt_dict)
assert isinstance(prompt_dict, dict)
negative_prompt = prompt_dict.get("negative_prompt")
sample_steps = prompt_dict.get("sample_steps", 30)
width = prompt_dict.get("width", 512)
height = prompt_dict.get("height", 512)
scale = prompt_dict.get("scale", 7.5)
seed = prompt_dict.get("seed")
controlnet_image = prompt_dict.get("controlnet_image")
prompt: str = prompt_dict.get("prompt", "")
sampler_name: str = prompt_dict.get("sample_sampler", args.sample_sampler)
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
scheduler = schedulers.get(sampler_name)
if scheduler is None:
scheduler = get_my_scheduler(
sample_sampler=sampler_name,
v_parameterization=args.v_parameterization,
)
schedulers[sampler_name] = scheduler
pipeline.scheduler = scheduler
if prompt_replacement is not None:
prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1])
if negative_prompt is not None:
negative_prompt = negative_prompt.replace(prompt_replacement[0], prompt_replacement[1])
if controlnet_image is not None:
controlnet_image = Image.open(controlnet_image).convert("RGB")
controlnet_image = controlnet_image.resize((width, height), Image.LANCZOS)
height = max(64, height - height % 8) # round to divisible by 8
width = max(64, width - width % 8) # round to divisible by 8
print(f"prompt: {prompt}")
print(f"negative_prompt: {negative_prompt}")
print(f"height: {height}")
print(f"width: {width}")
print(f"sample_steps: {sample_steps}")
print(f"scale: {scale}")
print(f"sample_sampler: {sampler_name}")
if seed is not None:
print(f"seed: {seed}")
with accelerator.autocast():
latents = pipeline(
prompt=prompt,
height=height,
width=width,
num_inference_steps=sample_steps,
guidance_scale=scale,
negative_prompt=negative_prompt,
controlnet=controlnet,
controlnet_image=controlnet_image,
)
image = pipeline.latents_to_image(latents)[0]
ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}"
seed_suffix = "" if seed is None else f"_{seed}"
img_filename = (
f"{'' if args.output_name is None else args.output_name + '_'}{ts_str}_{num_suffix}_{i:02d}{seed_suffix}.png"
)
image.save(os.path.join(save_dir, img_filename))
# wandb有効時のみログを送信
try:
wandb_tracker = accelerator.get_tracker("wandb")
try:
import wandb
except ImportError: # 事前に一度確認するのでここはエラー出ないはず
raise ImportError("No wandb / wandb がインストールされていないようです")
wandb_tracker.log({f"sample_{i}": wandb.Image(image)})
except: # wandb 無効時
pass
# clear pipeline and cache to reduce vram usage
del pipeline
torch.cuda.empty_cache()
torch.set_rng_state(rng_state)
if cuda_rng_state is not None:
torch.cuda.set_rng_state(cuda_rng_state)
vae.to(org_vae_device)
# endregion
# region 前処理用
class ImageLoadingDataset(torch.utils.data.Dataset):
def __init__(self, image_paths):
self.images = image_paths
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = self.images[idx]
try:
image = Image.open(img_path).convert("RGB")
# convert to tensor temporarily so dataloader will accept it
tensor_pil = transforms.functional.pil_to_tensor(image)
except Exception as e:
print(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}")
return None
return (tensor_pil, img_path)
# endregion
# collate_fn用 epoch,stepはmultiprocessing.Value
class collator_class:
def __init__(self, epoch, step, dataset):
self.current_epoch = epoch
self.current_step = step
self.dataset = dataset # not used if worker_info is not None, in case of multiprocessing
def __call__(self, examples):
worker_info = torch.utils.data.get_worker_info()
# worker_info is None in the main process
if worker_info is not None:
dataset = worker_info.dataset
else:
dataset = self.dataset
# set epoch and step
dataset.set_current_epoch(self.current_epoch.value)
dataset.set_current_step(self.current_step.value)
return examples[0]
class LossRecorder:
def __init__(self):
self.loss_list: List[float] = []
self.loss_total: float = 0.0
def add(self, *, epoch: int, step: int, loss: float) -> None:
if epoch == 0:
self.loss_list.append(loss)
else:
self.loss_total -= self.loss_list[step]
self.loss_list[step] = loss
self.loss_total += loss
@property
def moving_average(self) -> float:
return self.loss_total / len(self.loss_list)
|