File size: 1,229 Bytes
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch"""

import os
import sys

import numpy as np
import torch

try:
    from urllib import urlretrieve
except ImportError:
    from urllib.request import urlretrieve


def load_url(url, model_dir='./pretrained', map_location=None):
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    filename = url.split('/')[-1]
    cached_file = os.path.join(model_dir, filename)
    if not os.path.exists(cached_file):
        sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
        urlretrieve(url, cached_file)
    return torch.load(cached_file, map_location=map_location)


def color_encode(labelmap, colors, mode='RGB'):
    labelmap = labelmap.astype('int')
    labelmap_rgb = np.zeros((labelmap.shape[0], labelmap.shape[1], 3),
                            dtype=np.uint8)
    for label in np.unique(labelmap):
        if label < 0:
            continue
        labelmap_rgb += (labelmap == label)[:, :, np.newaxis] * \
            np.tile(colors[label],
                    (labelmap.shape[0], labelmap.shape[1], 1))

    if mode == 'BGR':
        return labelmap_rgb[:, :, ::-1]
    else:
        return labelmap_rgb