File size: 5,206 Bytes
19b3da3
 
 
 
 
 
 
 
8aeb9e5
19b3da3
9bb133c
19b3da3
 
 
 
 
9bb133c
1bc457e
19b3da3
 
 
8aeb9e5
19b3da3
9bb133c
 
 
1bc457e
 
 
19b3da3
a3d6c18
 
19b3da3
a3d6c18
 
 
19b3da3
 
 
 
 
 
 
9bb133c
 
 
1bc457e
 
 
a3d6c18
19b3da3
8aeb9e5
 
 
 
 
 
 
 
 
19b3da3
 
 
8aeb9e5
 
 
19b3da3
 
8aeb9e5
 
 
 
 
 
 
19b3da3
 
 
8aeb9e5
 
 
 
 
 
19b3da3
 
 
 
 
 
 
 
 
 
8aeb9e5
 
 
 
 
 
 
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aeb9e5
 
 
19b3da3
8aeb9e5
19b3da3
 
 
8aeb9e5
 
 
19b3da3
8aeb9e5
 
 
19b3da3
 
9bb133c
 
1bc457e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bb133c
 
 
 
 
 
 
 
8aeb9e5
 
 
 
 
 
9bb133c
8aeb9e5
19b3da3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import math
import os
from pathlib import Path
from typing import Union

import cv2
import numpy as np
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from basicsr.utils.download_util import load_file_from_url
from gfpgan import GFPGANer
from PIL import Image
from realesrgan import RealESRGANer

import internals.util.image as ImageUtil
from internals.util.commons import download_image
from internals.util.config import get_root_dir
from models.ultrasharp.model import Ultrasharp


class Upscaler:
    __model_esrgan_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth"
    __model_esrgan_anime_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth"
    __model_gfpgan_url = (
        "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth"
    )
    __model_4x_ultrasharp_url = (
        "https://comic-assets.s3.ap-south-1.amazonaws.com/models/4x-UltraSharp.pth"
    )

    __loaded = False

    def load(self):
        if self.__loaded:
            return

        download_dir = Path(Path.home() / ".cache" / "realesrgan")
        download_dir.mkdir(parents=True, exist_ok=True)

        self.__model_path = self.__preload_model(self.__model_esrgan_url, download_dir)
        self.__model_path_anime = self.__preload_model(
            self.__model_esrgan_anime_url, download_dir
        )
        self.__model_path_gfpgan = self.__preload_model(
            self.__model_gfpgan_url, download_dir
        )
        self.__model_path_4x_ultrasharp = self.__preload_model(
            self.__model_4x_ultrasharp_url, download_dir
        )
        self.__loaded = True

    def upscale(
        self,
        image: Union[str, Image.Image],
        width: int,
        height: int,
        face_enhance: bool,
        resize_dimension: int,
    ) -> bytes:
        model = SRVGGNetCompact(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_conv=32,
            upscale=4,
            act_type="prelu",
        )
        return self.__internal_upscale(
            image,
            resize_dimension,
            face_enhance,
            width,
            height,
            self.__model_path,
            model,
        )

    def upscale_anime(
        self,
        image: Union[str, Image.Image],
        width: int,
        height: int,
        face_enhance: bool,
        resize_dimension: int,
    ) -> bytes:
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=4,
        )
        return self.__internal_upscale(
            image,
            resize_dimension,
            face_enhance,
            width,
            height,
            self.__model_path_anime,
            model,
        )

    def __preload_model(self, url: str, download_dir: Path):
        name = url.split("/")[-1]
        if not os.path.exists(str(download_dir / name)):
            return load_file_from_url(
                url=url,
                model_dir=str(download_dir),
                progress=True,
                file_name=None,
            )
        else:
            return str(download_dir / name)

    def __internal_upscale(
        self,
        image,
        resize_dimension: int,
        face_enhance: bool,
        width: int,
        height: int,
        model_path: str,
        model,
    ) -> bytes:
        if type(image) is str:
            image = download_image(image)
            w, h = image.size
            if max(w, h) > 1536:
                image = ImageUtil.resize_image(image, dimension=1536)

        in_path = str(Path.home() / ".cache" / "input_upscale.png")
        image.save(in_path)
        input_image = cv2.imread(in_path, cv2.IMREAD_UNCHANGED)
        dimension = min(input_image.shape[0], input_image.shape[1])
        scale = max(math.floor(resize_dimension / dimension), 2)

        os.chdir(str(Path.home() / ".cache"))
        if scale == 4:
            print("Using 4x-Ultrasharp")
            upsampler = Ultrasharp(self.__model_path_4x_ultrasharp)
        else:
            print("Using RealESRGANer")
            upsampler = RealESRGANer(
                scale=4,
                model_path=model_path,
                model=model,
                half=False,
                gpu_id="0",
                tile=0,
                tile_pad=10,
                pre_pad=0,
            )
        face_enhancer = GFPGANer(
            model_path=self.__model_path_gfpgan,
            upscale=scale,
            arch="clean",
            channel_multiplier=2,
            bg_upsampler=upsampler,
        )

        if face_enhance:
            _, _, output = face_enhancer.enhance(
                input_image, has_aligned=False, only_center_face=False, paste_back=True
            )
        else:
            output, _ = upsampler.enhance(input_image, outscale=scale)
        os.chdir(get_root_dir())
        cv2.imwrite("out.png", output)
        out_bytes = cv2.imencode(".png", output)[1].tobytes()
        return out_bytes