File size: 6,855 Bytes
a3d6c18 9d63ece a3d6c18 cd51d32 a3d6c18 cd51d32 a3d6c18 cd51d32 a3d6c18 b71808f a3d6c18 9bb133c a3d6c18 9bb133c a3d6c18 f256b62 a3d6c18 9d63ece a3d6c18 9d63ece a3d6c18 9bb133c a3d6c18 cd51d32 b71808f a3d6c18 cd51d32 9d63ece cd51d32 a3d6c18 9bb133c a3d6c18 9bb133c a3d6c18 9bb133c a3d6c18 9bb133c a3d6c18 f256b62 a3d6c18 f256b62 a3d6c18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
from pathlib import Path
from typing import Optional, Union
from PIL import Image, ImageDraw
from torch import ge
from internals.util.commons import download_file, download_image, safe_index
from internals.util.config import get_root_dir
from models.pose.body import Body
class PoseDetector:
__pose_model = (
"https://comic-assets.s3.ap-south-1.amazonaws.com/models/body_pose_model.pth"
)
__loaded = False
def load(self):
if self.__loaded:
return
pose_path = Path.home() / ".cache" / self.__pose_model.split("/")[-1]
download_file(self.__pose_model, pose_path)
self.body_estimation = Body(str(pose_path))
self.__loaded = True
def transform(
self,
image: Union[str, Image.Image],
width: int,
height: int,
client_coordinates: Optional[dict],
) -> Image.Image:
"Infer pose coordinates from image, map head and body coordinates to infered ones, create pose"
self.load()
if type(image) is str:
image = download_image(image)
infer_coordinates = self.infer(image, width, height)
candidate_list = self.make_pose_from_subset(
infer_coordinates["candidate"], infer_coordinates["subset"]
)
# hard check only one person
infer_coordinates["candidate"] = candidate_list[0]
if client_coordinates and client_coordinates["candidate"]:
client_coordinates = self.resize_coordinates(
client_coordinates, 384, 384, width, height
)
infer_coordinates = self.map_coordinates(
client_coordinates, infer_coordinates
)
print(infer_coordinates)
return self.create_pose(infer_coordinates, width, height)
def resize_coordinates(
self, data: dict, ori_width, ori_height, new_width, new_height
):
points = data["candidate"]
new_points = []
if new_width > new_height:
ori_min = min(ori_width, ori_height)
new_min = min(new_width, new_height)
else:
ori_min = max(ori_width, ori_height)
new_min = max(new_width, new_height)
for _, pair in enumerate(points):
x = pair[0] * new_min / ori_min
y = pair[1] * new_min / ori_min
new_points.append([x, y])
return {"candidate": new_points, "subset": data["subset"]}
def create_pose(self, data: dict, width: int, height: int) -> Image.Image:
image = Image.new("RGBA", (width, height), "black")
draw = ImageDraw.Draw(image)
points: list = data["candidate"]
for pair in self.__pose_logical_map:
xy = safe_index(points, pair[0] - 1)
x1y1 = safe_index(points, pair[1] - 1)
if xy and x1y1:
draw.line(
(xy[0], xy[1], x1y1[0], x1y1[1]),
fill=pair[2],
width=4,
)
for i, point in enumerate(points):
x = safe_index(point, 0)
y = safe_index(point, 1)
if x and y:
draw.ellipse((x - 3, y - 3, x + 3, y + 3), fill=self.__points_color[i])
return image
def infer(self, image: Union[str, Image.Image], width, height) -> dict:
self.load()
candidate = []
subset = []
if type(image) == str:
image = download_image(image)
image = image.resize((width, height))
candidate, subset = self.body_estimation.__call__(image)
candidate = candidate.tolist()
subset = subset.tolist()
candidate = [item[:2] for item in candidate]
return {"candidate": candidate, "subset": subset}
def map_coordinates(
self, client_coordinates: dict, infer_coordinates: dict
) -> dict:
client_points = client_coordinates["candidate"]
infer_points = infer_coordinates["candidate"]
c_neck = client_points[1]
i_neck = infer_points[1]
dx = i_neck[0] - c_neck[0]
dy = i_neck[1] - c_neck[1]
# Considering client coordinates truthy and translate it to the position of infered coordinates
for i in range(len(client_points)):
point = client_points[i - 1]
infer_points[i - 1] = [point[0] + dx, point[1] + dy]
return {"candidate": infer_points, "subset": infer_coordinates["subset"]}
def make_pose_from_subset(self, candidate, subset):
"Maps pose coordinates for subset"
def make_pose_from_subset_item(candidate, subset_item):
pose = []
for j in range(18):
i = int(subset_item[j])
pose.append(
None
if i < 0 or not safe_index(candidate, i)
else list(map(lambda x: x, candidate[i]))
)
return pose
return list(
map(
lambda subset_item: make_pose_from_subset_item(candidate, subset_item),
subset,
)
)
def __convert_keypoints(self, keypoints):
return [keypoints[i] for i in self.__kim]
__kim = [0, 17, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3]
__pose_logical_map = [
[2, 3, (255, 0, 0, 153)],
[3, 4, (255, 85, 0, 153)],
[4, 5, (255, 170, 0, 153)],
[2, 6, (255, 255, 0, 153)],
[6, 7, (170, 255, 0, 153)],
[7, 8, (85, 255, 0, 153)],
[2, 9, (0, 255, 0, 153)],
[9, 10, (0, 255, 85, 153)],
[10, 11, (0, 255, 170, 153)],
[2, 12, (0, 255, 255, 153)],
[12, 13, (0, 170, 255, 153)],
[13, 14, (0, 85, 255, 153)],
[2, 1, (0, 0, 255, 153)],
[1, 15, (85, 0, 255, 153)],
[15, 17, (170, 0, 255, 153)],
[1, 16, (255, 0, 255, 153)],
[16, 18, (255, 0, 170, 153)],
]
# __pose_logical_map = [
# [1, 2, "#000099"],
# [1, 16, "#330099"],
# [1, 15, "#660099"],
# [16, 18, "#990099"],
# [15, 17, "#990066"],
# [2, 3, "#990001"],
# [2, 6, "#993301"],
# [3, 4, "#996502"],
# [4, 5, "#999900"],
# [6, 7, "#669900"],
# [7, 8, "#349900"],
# [2, 9, "#009900"],
# [2, 12, "#009999"],
# [9, 10, "#009966"],
# [10, 11, "#009966"],
# [12, 13, "#006699"],
# [13, 14, "#013399"],
# ]
__points_color = [
"#ff0000",
"#ff5600",
"#ffaa01",
"#ffff00",
"#aaff03",
"#53ff00",
"#03ff00",
"#03ff55",
"#03ffaa",
"#03ffff",
"#05aaff",
"#0055ff",
"#0000ff",
"#5500ff",
"#aa00ff",
"#ff00aa",
"#ff00ff",
"#ff0055",
]
|