File size: 8,593 Bytes
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from typing import Tuple, Dict, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F


class BaseAdversarialLoss:
    def pre_generator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
                           generator: nn.Module, discriminator: nn.Module):
        """
        Prepare for generator step
        :param real_batch: Tensor, a batch of real samples
        :param fake_batch: Tensor, a batch of samples produced by generator
        :param generator:
        :param discriminator:
        :return: None
        """

    def pre_discriminator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
                               generator: nn.Module, discriminator: nn.Module):
        """
        Prepare for discriminator step
        :param real_batch: Tensor, a batch of real samples
        :param fake_batch: Tensor, a batch of samples produced by generator
        :param generator:
        :param discriminator:
        :return: None
        """

    def generator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
                       discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor,
                       mask: Optional[torch.Tensor] = None) \
            -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
        """
        Calculate generator loss
        :param real_batch: Tensor, a batch of real samples
        :param fake_batch: Tensor, a batch of samples produced by generator
        :param discr_real_pred: Tensor, discriminator output for real_batch
        :param discr_fake_pred: Tensor, discriminator output for fake_batch
        :param mask: Tensor, actual mask, which was at input of generator when making fake_batch
        :return: total generator loss along with some values that might be interesting to log
        """
        raise NotImplemented()

    def discriminator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
                           discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor,
                           mask: Optional[torch.Tensor] = None) \
            -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
        """
        Calculate discriminator loss and call .backward() on it
        :param real_batch: Tensor, a batch of real samples
        :param fake_batch: Tensor, a batch of samples produced by generator
        :param discr_real_pred: Tensor, discriminator output for real_batch
        :param discr_fake_pred: Tensor, discriminator output for fake_batch
        :param mask: Tensor, actual mask, which was at input of generator when making fake_batch
        :return: total discriminator loss along with some values that might be interesting to log
        """
        raise NotImplemented()

    def interpolate_mask(self, mask, shape):
        assert mask is not None
        assert self.allow_scale_mask or shape == mask.shape[-2:]
        if shape != mask.shape[-2:] and self.allow_scale_mask:
            if self.mask_scale_mode == 'maxpool':
                mask = F.adaptive_max_pool2d(mask, shape)
            else:
                mask = F.interpolate(mask, size=shape, mode=self.mask_scale_mode)
        return mask

def make_r1_gp(discr_real_pred, real_batch):
    if torch.is_grad_enabled():
        grad_real = torch.autograd.grad(outputs=discr_real_pred.sum(), inputs=real_batch, create_graph=True)[0]
        grad_penalty = (grad_real.view(grad_real.shape[0], -1).norm(2, dim=1) ** 2).mean()
    else:
        grad_penalty = 0
    real_batch.requires_grad = False

    return grad_penalty

class NonSaturatingWithR1(BaseAdversarialLoss):
    def __init__(self, gp_coef=5, weight=1, mask_as_fake_target=False, allow_scale_mask=False,
                 mask_scale_mode='nearest', extra_mask_weight_for_gen=0,
                 use_unmasked_for_gen=True, use_unmasked_for_discr=True):
        self.gp_coef = gp_coef
        self.weight = weight
        # use for discr => use for gen;
        # otherwise we teach only the discr to pay attention to very small difference
        assert use_unmasked_for_gen or (not use_unmasked_for_discr)
        # mask as target => use unmasked for discr:
        # if we don't care about unmasked regions at all
        # then it doesn't matter if the value of mask_as_fake_target is true or false
        assert use_unmasked_for_discr or (not mask_as_fake_target)
        self.use_unmasked_for_gen = use_unmasked_for_gen
        self.use_unmasked_for_discr = use_unmasked_for_discr
        self.mask_as_fake_target = mask_as_fake_target
        self.allow_scale_mask = allow_scale_mask
        self.mask_scale_mode = mask_scale_mode
        self.extra_mask_weight_for_gen = extra_mask_weight_for_gen

    def generator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
                       discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor,
                       mask=None) \
            -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
        fake_loss = F.softplus(-discr_fake_pred)
        if (self.mask_as_fake_target and self.extra_mask_weight_for_gen > 0) or \
                not self.use_unmasked_for_gen:  # == if masked region should be treated differently
            mask = self.interpolate_mask(mask, discr_fake_pred.shape[-2:])
            if not self.use_unmasked_for_gen:
                fake_loss = fake_loss * mask
            else:
                pixel_weights = 1 + mask * self.extra_mask_weight_for_gen
                fake_loss = fake_loss * pixel_weights

        return fake_loss.mean() * self.weight, dict()

    def pre_discriminator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
                               generator: nn.Module, discriminator: nn.Module):
        real_batch.requires_grad = True

    def discriminator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
                           discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor,
                           mask=None) \
            -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

        real_loss = F.softplus(-discr_real_pred)
        grad_penalty = make_r1_gp(discr_real_pred, real_batch) * self.gp_coef
        fake_loss = F.softplus(discr_fake_pred)

        if not self.use_unmasked_for_discr or self.mask_as_fake_target:
            # == if masked region should be treated differently
            mask = self.interpolate_mask(mask, discr_fake_pred.shape[-2:])
            # use_unmasked_for_discr=False only makes sense for fakes;
            # for reals there is no difference beetween two regions
            fake_loss = fake_loss * mask
            if self.mask_as_fake_target:
                fake_loss = fake_loss + (1 - mask) * F.softplus(-discr_fake_pred)

        sum_discr_loss = real_loss + grad_penalty + fake_loss
        metrics = dict(discr_real_out=discr_real_pred.mean(),
                       discr_fake_out=discr_fake_pred.mean(),
                       discr_real_gp=grad_penalty)
        return sum_discr_loss.mean(), metrics

class BCELoss(BaseAdversarialLoss):
    def __init__(self, weight):
        self.weight = weight
        self.bce_loss = nn.BCEWithLogitsLoss()

    def generator_loss(self, discr_fake_pred: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
        real_mask_gt = torch.zeros(discr_fake_pred.shape).to(discr_fake_pred.device)
        fake_loss = self.bce_loss(discr_fake_pred, real_mask_gt) * self.weight
        return fake_loss, dict()

    def pre_discriminator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
                               generator: nn.Module, discriminator: nn.Module):
        real_batch.requires_grad = True

    def discriminator_loss(self,
                           mask: torch.Tensor,
                           discr_real_pred: torch.Tensor,
                           discr_fake_pred: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

        real_mask_gt = torch.zeros(discr_real_pred.shape).to(discr_real_pred.device)
        sum_discr_loss = (self.bce_loss(discr_real_pred, real_mask_gt) +  self.bce_loss(discr_fake_pred, mask)) / 2
        metrics = dict(discr_real_out=discr_real_pred.mean(),
                       discr_fake_out=discr_fake_pred.mean(),
                       discr_real_gp=0)
        return sum_discr_loss, metrics


def make_discrim_loss(kind, **kwargs):
    if kind == 'r1':
        return NonSaturatingWithR1(**kwargs)
    elif kind == 'bce':
        return BCELoss(**kwargs)
    raise ValueError(f'Unknown adversarial loss kind {kind}')