File size: 1,914 Bytes
fae1125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e862d2b
 
 
fae1125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e862d2b
fae1125
 
 
 
 
 
e862d2b
 
 
 
 
fae1125
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_keras_callback
model-index:
- name: Audi24/fire_classifier
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Audi24/fire_classifier

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1936
- Validation Loss: 0.1743
- Train Accuracy: 0.9889
- Epoch: 4

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1755, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 1.0088     | 0.8898          | 0.8667         | 0     |
| 0.7325     | 0.6165          | 0.9333         | 1     |
| 0.4620     | 0.3794          | 0.9444         | 2     |
| 0.3100     | 0.2546          | 0.9667         | 3     |
| 0.1936     | 0.1743          | 0.9889         | 4     |


### Framework versions

- Transformers 4.33.2
- TensorFlow 2.13.0
- Datasets 2.14.5
- Tokenizers 0.13.3