AtobeYanlin commited on
Commit
0a2cb62
1 Parent(s): 6391d88

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 266.45 +/- 16.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79830c3ddd80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79830c3dde10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79830c3ddea0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79830c3ddf30>", "_build": "<function ActorCriticPolicy._build at 0x79830c3ddfc0>", "forward": "<function ActorCriticPolicy.forward at 0x79830c3de050>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79830c3de0e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79830c3de170>", "_predict": "<function ActorCriticPolicy._predict at 0x79830c3de200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79830c3de290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79830c3de320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79830c3de3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79830c37b080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1725893388042951452, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAA3rh72Pli66OzafO75qpjbEt5k6oLKjNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+mQj2SMcaMAWyUTSoBjAF0lEdAmwka+nIhhnV9lChoBkdAcFsihWYF7mgHTUQBaAhHQJsK2dlNDdB1fZQoaAZHQHMkRdpqREFoB001AWgIR0CbDaPzFuNxdX2UKGgGR0BwGovkBCD3aAdNbQFoCEdAmw+p/oaDPHV9lChoBkdAbuUxPfsNUmgHTSYBaAhHQJsRR6OYIB11fZQoaAZHv/AQQL/jsD5oB0veaAhHQJsSee5Fw1l1fZQoaAZHQD62k8A7xNJoB0vcaAhHQJsUz2h7E511fZQoaAZHQHDgd5dGAkNoB000AWgIR0CbFoyH2ys0dX2UKGgGR0BvJh77bcoIaAdNIgFoCEdAmxgklNUOu3V9lChoBkdAcBlhXKbKBGgHTZABaAhHQJsb6PdVNpN1fZQoaAZHQG7N4Z2pyZNoB02JAWgIR0CbHpjopx3ndX2UKGgGR0Bu7+Eh7mdRaAdNIgFoCEdAmyDMm4RVZXV9lChoBkdAcEzjslb/wWgHTSkBaAhHQJskuDqW1MN1fZQoaAZHQFCP1/DtPYZoB0vNaAhHQJsl2DUVi4J1fZQoaAZHQG7w0fPomoloB01OAWgIR0CbJ7aAnUlSdX2UKGgGR0Bw2GZc9nscaAdNcgFoCEdAmym65wwTNHV9lChoBkdAciN9HMEA52gHTbwBaAhHQJstXs7dSEV1fZQoaAZHQGznHmq5sj5oB00UAWgIR0CbLu9Sde6adX2UKGgGR0BxrbYVZcLSaAdNIAFoCEdAmzCFiWmgrnV9lChoBkdAcLhutwJgLWgHTTABaAhHQJszYO5J9Rd1fZQoaAZHQEzHa5f+judoB0vVaAhHQJs0jNUwSJ11fZQoaAZHQHJRgAdXDFZoB00qAWgIR0CbNimDDjzadX2UKGgGR0Bw0Kqfe1rqaAdNawFoCEdAmzlLw4KhMHV9lChoBkdAcBjavA44qGgHTSwBaAhHQJs7CWw/xDt1fZQoaAZHQHB9FtKqXF9oB00uAWgIR0CbPLGDL8rJdX2UKGgGR0BxtSCaqjrSaAdNCQFoCEdAmz4gdXDFZXV9lChoBkdAcVTxbB42TGgHTRMCaAhHQJtCT7tRekZ1fZQoaAZHQGp5SvLX+VFoB029AWgIR0CbRORIz3yqdX2UKGgGR0BynsSi/O+qaAdL/mgIR0CbR3iPhhphdX2UKGgGR0BBx1anrIHUaAdL6WgIR0CbSNGZuyeJdX2UKGgGR0BxgJT6zmfXaAdNDAFoCEdAm0pbw8W9DnV9lChoBkdAcDK8lHBk7WgHTRIBaAhHQJtL57b+Lm91fZQoaAZHQHG+E7OmixpoB00rAWgIR0CbT0zhP0qZdX2UKGgGR0BwUNhc7hegaAdNQQFoCEdAm1F5VOsT4HV9lChoBkdAbFiD3dsSCmgHTSkBaAhHQJtTupKjBVN1fZQoaAZHQHD+eqR2bG5oB00XAWgIR0CbV2hF3IMjdX2UKGgGR0BwXVzeXRgJaAdL+2gIR0CbWPgpz90jdX2UKGgGR0BuSE4rBj4IaAdNIQFoCEdAm1qS8e0XxnV9lChoBkdAbcEM2m51/2gHTQgBaAhHQJtcFFMIu5B1fZQoaAZHQG5Rw8nuy/toB01WAWgIR0CbXxz7uUlidX2UKGgGR0Bxb1dB0IToaAdNQwFoCEdAm2DqcVgx8HV9lChoBkdAbmckhRqGlGgHTRsBaAhHQJtieKTB68h1fZQoaAZHQHFOzIeYD1ZoB00NAWgIR0CbY/83Mpw0dX2UKGgGR0ByTJ31SOzZaAdNIwFoCEdAm2bNVR1ox3V9lChoBkdAcc897WuoxmgHTTkBaAhHQJtomDUVi4J1fZQoaAZHQHEhbWqcVgxoB00QAWgIR0CbahvDP4VRdX2UKGgGR0BxCRZha1TjaAdNXQFoCEdAm21NeUpuuXV9lChoBkdAcMOo5xR2sGgHTY0BaAhHQJtvm9OARTV1fZQoaAZHQHBzL5ylvZRoB00OAWgIR0CbcTEAYHgQdX2UKGgGR0BwgQp7TlT4aAdNHQFoCEdAm3QBlDneSHV9lChoBkdAcawX6ZYxL2gHTUwBaAhHQJt13LIPsiV1fZQoaAZHQGaNSoOx0MhoB03oA2gIR0CbfMbmlqJudX2UKGgGR0BwNdBjWkJsaAdNVQFoCEdAm36jg2qDLHV9lChoBkdAb44RFI/Z/WgHTUYBaAhHQJuCMbPyCnR1fZQoaAZHQGKe5tvXK8toB03oA2gIR0Cbiz44ZMtcdX2UKGgGR0BtpUFINEw4aAdN9QFoCEdAm44JjDsMRnV9lChoBkdAclnQfZElV2gHTRwBaAhHQJuPme4Cp3p1fZQoaAZHQGMZ1N5+pfhoB03oA2gIR0CblmCD28IzdX2UKGgGR0By0HO3UhFFaAdNswFoCEdAm5n2k30f5nV9lChoBkdAbcBRgJC0GGgHTTkBaAhHQJubsYIjW091fZQoaAZHQG7Y8xTKkmBoB02tAWgIR0Cbnha9K28adX2UKGgGR0BuC88DB/I9aAdN1gFoCEdAm6HgFs54nnV9lChoBkdAbo5bB42S+2gHTSABaAhHQJujdb+tKZl1fZQoaAZHQGuDxs2vStxoB01bAWgIR0CbpokVeruIdX2UKGgGR0Bwg3FOwgTzaAdNEQJoCEdAm6l+iJwbVHV9lChoBkdAcCzvHcUM5WgHTX0BaAhHQJurqLIgeRx1fZQoaAZHQHJgI02tMf1oB00YAWgIR0CbrlNQj2SMdX2UKGgGR0BIkX5eqrBCaAdL6GgIR0Cbr5eHzpX7dX2UKGgGR0BHnqASWZ7YaAdLy2gIR0CbsLOIInjRdX2UKGgGR0BzMzSUkfLcaAdNXgFoCEdAm7Kn+dbxE3V9lChoBkdATDh6nivPkmgHS89oCEdAm7WAlfJFLHV9lChoBkdASpVd9lVcU2gHS9FoCEdAm7b1donKGXV9lChoBkdAclg5oXbdrWgHTSABaAhHQJu5HfzjFQ51fZQoaAZHQHK33Y150KZoB01fAWgIR0Cbu8b8WKuTdX2UKGgGR0BxjW4c3l0YaAdNLwFoCEdAm79QeJYT03V9lChoBkdAU4iBshxHXmgHS/ZoCEdAm8Cxyfcvd3V9lChoBkdASJVQ40dilWgHS8VoCEdAm8HEfHPu5XV9lChoBkdAcTt44p+c6WgHTTkBaAhHQJvEpEMLF4t1fZQoaAZHQHG+Q3kxREZoB01hAWgIR0Cbxq+t8uzydX2UKGgGR0BxvDb48EFGaAdNIwFoCEdAm8heuA7Pp3V9lChoBkdAcrzNKh+OO2gHTTsBaAhHQJvKF8KG+K11fZQoaAZHQHK/zSb6P81oB01fAWgIR0CbzS2wmmcfdX2UKGgGR0BhBrQJHAh0aAdN6ANoCEdAm9P7/Khcq3V9lChoBkdANcBPO6d1+2gHS9JoCEdAm9UgqNIbwXV9lChoBkdAcnyWSU1Q7GgHTVoBaAhHQJvXC+h4+r51fZQoaAZHQEs8HVwxWT5oB0vVaAhHQJvZUqJ/G2l1fZQoaAZHQHHkPt6X0GxoB00iAWgIR0Cb2wDqnm7rdX2UKGgGR0ByHnwqiGnGaAdNJwFoCEdAm9ygUQCjlHV9lChoBkdAcZxzq8lHBmgHTU8BaAhHQJved+PRzBB1fZQoaAZHQG9vGtyPuG9oB01qAWgIR0Cb4cAnDziCdX2UKGgGR0BxSRdeIEbHaAdNUQFoCEdAm+OX5BTn73V9lChoBkdAcDjIgNgBtGgHTTwCaAhHQJvoo/s3Q2N1fZQoaAZHQGg7ZwXIlt1oB03oA2gIR0Cb8WsA/9pAdX2UKGgGR0Bw6p4D9wWFaAdNIwFoCEdAm/MLUkOZs3V9lChoBkdAcLBDXOGCZmgHTUsBaAhHQJv06vfTCtR1fZQoaAZHQGE44ku6ErZoB03oA2gIR0Cb+7zyz5XVdX2UKGgGR0BuHt0FKTStaAdNTQFoCEdAm/65O8Cgb3V9lChoBkdAcTKQDV6NVGgHTZoBaAhHQJwBDf8/D+B1fZQoaAZHQHIhFUADJU5oB00YAWgIR0CcApavzOHGdX2UKGgGR0BxvCRoysS1aAdN8AJoCEdAnAgU2LpA2XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ecc1991e786170e05ae57460d32cd7128fbc7138f68b8e4a917a268f4d83549
3
+ size 147410
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79830c3ddd80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79830c3dde10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79830c3ddea0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79830c3ddf30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79830c3ddfc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79830c3de050>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79830c3de0e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79830c3de170>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79830c3de200>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79830c3de290>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79830c3de320>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79830c3de3b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79830c37b080>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1725893388042951452,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAA3rh72Pli66OzafO75qpjbEt5k6oLKjNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+mQj2SMcaMAWyUTSoBjAF0lEdAmwka+nIhhnV9lChoBkdAcFsihWYF7mgHTUQBaAhHQJsK2dlNDdB1fZQoaAZHQHMkRdpqREFoB001AWgIR0CbDaPzFuNxdX2UKGgGR0BwGovkBCD3aAdNbQFoCEdAmw+p/oaDPHV9lChoBkdAbuUxPfsNUmgHTSYBaAhHQJsRR6OYIB11fZQoaAZHv/AQQL/jsD5oB0veaAhHQJsSee5Fw1l1fZQoaAZHQD62k8A7xNJoB0vcaAhHQJsUz2h7E511fZQoaAZHQHDgd5dGAkNoB000AWgIR0CbFoyH2ys0dX2UKGgGR0BvJh77bcoIaAdNIgFoCEdAmxgklNUOu3V9lChoBkdAcBlhXKbKBGgHTZABaAhHQJsb6PdVNpN1fZQoaAZHQG7N4Z2pyZNoB02JAWgIR0CbHpjopx3ndX2UKGgGR0Bu7+Eh7mdRaAdNIgFoCEdAmyDMm4RVZXV9lChoBkdAcEzjslb/wWgHTSkBaAhHQJskuDqW1MN1fZQoaAZHQFCP1/DtPYZoB0vNaAhHQJsl2DUVi4J1fZQoaAZHQG7w0fPomoloB01OAWgIR0CbJ7aAnUlSdX2UKGgGR0Bw2GZc9nscaAdNcgFoCEdAmym65wwTNHV9lChoBkdAciN9HMEA52gHTbwBaAhHQJstXs7dSEV1fZQoaAZHQGznHmq5sj5oB00UAWgIR0CbLu9Sde6adX2UKGgGR0BxrbYVZcLSaAdNIAFoCEdAmzCFiWmgrnV9lChoBkdAcLhutwJgLWgHTTABaAhHQJszYO5J9Rd1fZQoaAZHQEzHa5f+judoB0vVaAhHQJs0jNUwSJ11fZQoaAZHQHJRgAdXDFZoB00qAWgIR0CbNimDDjzadX2UKGgGR0Bw0Kqfe1rqaAdNawFoCEdAmzlLw4KhMHV9lChoBkdAcBjavA44qGgHTSwBaAhHQJs7CWw/xDt1fZQoaAZHQHB9FtKqXF9oB00uAWgIR0CbPLGDL8rJdX2UKGgGR0BxtSCaqjrSaAdNCQFoCEdAmz4gdXDFZXV9lChoBkdAcVTxbB42TGgHTRMCaAhHQJtCT7tRekZ1fZQoaAZHQGp5SvLX+VFoB029AWgIR0CbRORIz3yqdX2UKGgGR0BynsSi/O+qaAdL/mgIR0CbR3iPhhphdX2UKGgGR0BBx1anrIHUaAdL6WgIR0CbSNGZuyeJdX2UKGgGR0BxgJT6zmfXaAdNDAFoCEdAm0pbw8W9DnV9lChoBkdAcDK8lHBk7WgHTRIBaAhHQJtL57b+Lm91fZQoaAZHQHG+E7OmixpoB00rAWgIR0CbT0zhP0qZdX2UKGgGR0BwUNhc7hegaAdNQQFoCEdAm1F5VOsT4HV9lChoBkdAbFiD3dsSCmgHTSkBaAhHQJtTupKjBVN1fZQoaAZHQHD+eqR2bG5oB00XAWgIR0CbV2hF3IMjdX2UKGgGR0BwXVzeXRgJaAdL+2gIR0CbWPgpz90jdX2UKGgGR0BuSE4rBj4IaAdNIQFoCEdAm1qS8e0XxnV9lChoBkdAbcEM2m51/2gHTQgBaAhHQJtcFFMIu5B1fZQoaAZHQG5Rw8nuy/toB01WAWgIR0CbXxz7uUlidX2UKGgGR0Bxb1dB0IToaAdNQwFoCEdAm2DqcVgx8HV9lChoBkdAbmckhRqGlGgHTRsBaAhHQJtieKTB68h1fZQoaAZHQHFOzIeYD1ZoB00NAWgIR0CbY/83Mpw0dX2UKGgGR0ByTJ31SOzZaAdNIwFoCEdAm2bNVR1ox3V9lChoBkdAcc897WuoxmgHTTkBaAhHQJtomDUVi4J1fZQoaAZHQHEhbWqcVgxoB00QAWgIR0CbahvDP4VRdX2UKGgGR0BxCRZha1TjaAdNXQFoCEdAm21NeUpuuXV9lChoBkdAcMOo5xR2sGgHTY0BaAhHQJtvm9OARTV1fZQoaAZHQHBzL5ylvZRoB00OAWgIR0CbcTEAYHgQdX2UKGgGR0BwgQp7TlT4aAdNHQFoCEdAm3QBlDneSHV9lChoBkdAcawX6ZYxL2gHTUwBaAhHQJt13LIPsiV1fZQoaAZHQGaNSoOx0MhoB03oA2gIR0CbfMbmlqJudX2UKGgGR0BwNdBjWkJsaAdNVQFoCEdAm36jg2qDLHV9lChoBkdAb44RFI/Z/WgHTUYBaAhHQJuCMbPyCnR1fZQoaAZHQGKe5tvXK8toB03oA2gIR0Cbiz44ZMtcdX2UKGgGR0BtpUFINEw4aAdN9QFoCEdAm44JjDsMRnV9lChoBkdAclnQfZElV2gHTRwBaAhHQJuPme4Cp3p1fZQoaAZHQGMZ1N5+pfhoB03oA2gIR0CblmCD28IzdX2UKGgGR0By0HO3UhFFaAdNswFoCEdAm5n2k30f5nV9lChoBkdAbcBRgJC0GGgHTTkBaAhHQJubsYIjW091fZQoaAZHQG7Y8xTKkmBoB02tAWgIR0Cbnha9K28adX2UKGgGR0BuC88DB/I9aAdN1gFoCEdAm6HgFs54nnV9lChoBkdAbo5bB42S+2gHTSABaAhHQJujdb+tKZl1fZQoaAZHQGuDxs2vStxoB01bAWgIR0CbpokVeruIdX2UKGgGR0Bwg3FOwgTzaAdNEQJoCEdAm6l+iJwbVHV9lChoBkdAcCzvHcUM5WgHTX0BaAhHQJurqLIgeRx1fZQoaAZHQHJgI02tMf1oB00YAWgIR0CbrlNQj2SMdX2UKGgGR0BIkX5eqrBCaAdL6GgIR0Cbr5eHzpX7dX2UKGgGR0BHnqASWZ7YaAdLy2gIR0CbsLOIInjRdX2UKGgGR0BzMzSUkfLcaAdNXgFoCEdAm7Kn+dbxE3V9lChoBkdATDh6nivPkmgHS89oCEdAm7WAlfJFLHV9lChoBkdASpVd9lVcU2gHS9FoCEdAm7b1donKGXV9lChoBkdAclg5oXbdrWgHTSABaAhHQJu5HfzjFQ51fZQoaAZHQHK33Y150KZoB01fAWgIR0Cbu8b8WKuTdX2UKGgGR0BxjW4c3l0YaAdNLwFoCEdAm79QeJYT03V9lChoBkdAU4iBshxHXmgHS/ZoCEdAm8Cxyfcvd3V9lChoBkdASJVQ40dilWgHS8VoCEdAm8HEfHPu5XV9lChoBkdAcTt44p+c6WgHTTkBaAhHQJvEpEMLF4t1fZQoaAZHQHG+Q3kxREZoB01hAWgIR0Cbxq+t8uzydX2UKGgGR0BxvDb48EFGaAdNIwFoCEdAm8heuA7Pp3V9lChoBkdAcrzNKh+OO2gHTTsBaAhHQJvKF8KG+K11fZQoaAZHQHK/zSb6P81oB01fAWgIR0CbzS2wmmcfdX2UKGgGR0BhBrQJHAh0aAdN6ANoCEdAm9P7/Khcq3V9lChoBkdANcBPO6d1+2gHS9JoCEdAm9UgqNIbwXV9lChoBkdAcnyWSU1Q7GgHTVoBaAhHQJvXC+h4+r51fZQoaAZHQEs8HVwxWT5oB0vVaAhHQJvZUqJ/G2l1fZQoaAZHQHHkPt6X0GxoB00iAWgIR0Cb2wDqnm7rdX2UKGgGR0ByHnwqiGnGaAdNJwFoCEdAm9ygUQCjlHV9lChoBkdAcZxzq8lHBmgHTU8BaAhHQJved+PRzBB1fZQoaAZHQG9vGtyPuG9oB01qAWgIR0Cb4cAnDziCdX2UKGgGR0BxSRdeIEbHaAdNUQFoCEdAm+OX5BTn73V9lChoBkdAcDjIgNgBtGgHTTwCaAhHQJvoo/s3Q2N1fZQoaAZHQGg7ZwXIlt1oB03oA2gIR0Cb8WsA/9pAdX2UKGgGR0Bw6p4D9wWFaAdNIwFoCEdAm/MLUkOZs3V9lChoBkdAcLBDXOGCZmgHTUsBaAhHQJv06vfTCtR1fZQoaAZHQGE44ku6ErZoB03oA2gIR0Cb+7zyz5XVdX2UKGgGR0BuHt0FKTStaAdNTQFoCEdAm/65O8Cgb3V9lChoBkdAcTKQDV6NVGgHTZoBaAhHQJwBDf8/D+B1fZQoaAZHQHIhFUADJU5oB00YAWgIR0CcApavzOHGdX2UKGgGR0BxvCRoysS1aAdN8AJoCEdAnAgU2LpA2XVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ed581799bfe8c1a75409c596751b5ba54e4ee6e104516d43cd7b2dfaf207e84
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a4b720f658727f98bb1943805422df27a43ba41a58c31fc9cca404247af18f8
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (186 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 266.45273082487336, "std_reward": 16.09559892739571, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-09T16:08:55.776121"}