Astral7 commited on
Commit
85c8f14
·
verified ·
1 Parent(s): 97b65e5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -3
README.md CHANGED
@@ -17,8 +17,7 @@ probably proofread and complete it, then remove this comment. -->
17
 
18
  **roberta-large-finetuned-ner** is a fine-tuned Roberta model that is ready to use for **Named Entity Recognition**. It has been trained to recognize eight types of entities:
19
  Geographical, Organization, Person, Geopolitical Entity, Time indicator, Artifact, Event, Natural Phenomenon.
20
- This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an [Named Entity Recognition (NER) Corpus dataset]
21
- (https://www.kaggle.com/datasets/naseralqaydeh/named-entity-recognition-ner-corpus).
22
 
23
  It achieves the following results on the evaluation set:
24
  - Train Loss: 0.1164
@@ -86,7 +85,29 @@ This model was trained on a single T4 GPU.
86
  ### Training hyperparameters
87
 
88
  The following hyperparameters were used during training:
89
- - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4795, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  - training_precision: float32
91
 
92
  ### Training results
 
17
 
18
  **roberta-large-finetuned-ner** is a fine-tuned Roberta model that is ready to use for **Named Entity Recognition**. It has been trained to recognize eight types of entities:
19
  Geographical, Organization, Person, Geopolitical Entity, Time indicator, Artifact, Event, Natural Phenomenon.
20
+ This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an [Named Entity Recognition (NER) Corpus dataset](https://www.kaggle.com/datasets/naseralqaydeh/named-entity-recognition-ner-corpus).
 
21
 
22
  It achieves the following results on the evaluation set:
23
  - Train Loss: 0.1164
 
85
  ### Training hyperparameters
86
 
87
  The following hyperparameters were used during training:
88
+ - optimizer:
89
+ {
90
+ "name": "AdamWeightDecay",
91
+ "learning_rate": {
92
+ "module": "keras.optimizers.schedules",
93
+ "class_name": "PolynomialDecay",
94
+ "config": {
95
+ "initial_learning_rate": 2e-05,
96
+ "decay_steps": 4795,
97
+ "end_learning_rate": 0.0,
98
+ "power": 1.0,
99
+ "cycle": False,
100
+ "name": None,
101
+ },
102
+ "registered_name": None,
103
+ },
104
+ "decay": 0.0,
105
+ "beta_1": 0.9,
106
+ "beta_2": 0.999,
107
+ "epsilon": 1e-08,
108
+ "amsgrad": False,
109
+ "weight_decay_rate": 0.01,
110
+ } -
111
  - training_precision: float32
112
 
113
  ### Training results