Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-AFSA.zip +3 -0
- ppo-LunarLander-v2-AFSA/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-AFSA/data +94 -0
- ppo-LunarLander-v2-AFSA/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-AFSA/policy.pth +3 -0
- ppo-LunarLander-v2-AFSA/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-AFSA/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 234.84 +/- 22.67
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcbad2dd8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcbad2dd950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcbad2dd9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcbad2dda70>", "_build": "<function ActorCriticPolicy._build at 0x7fcbad2ddb00>", "forward": "<function ActorCriticPolicy.forward at 0x7fcbad2ddb90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcbad2ddc20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcbad2ddcb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcbad2ddd40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcbad2dddd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcbad2dde60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcbad336180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667865858284547135, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNLtb0Nd7A/iEBgvm4XiL68eKq9jKIqvAAAAAAAAAAAGhFnPVwfUjlHKMi7q+4/OGP2BTwKDUU2AACAPwAAgD/NHjq+9hs+O1dErDsKXvO48M4KvV06ADoAAIA/AACAP82skD1c0wK6XxrJuDn4ErRaYYw4ZZnnNwAAgD8AAIA/s2V1PcMpIbrKcQg5D/v6M+I2nDlK8Bq4AACAPwAAgD8zO0q8jx4iutKrEzrKOtc1XDikuCq5KrkAAIA/AACAP83Eqbv2FEm6eqOVO3OLtDb1EvA57vSsugAAgD8AAIA/mjyEPVIYp7kyxYK7PkmpNsAOGLuiQBq2AACAPwAAgD/NucQ8PWVeu6gsDTuXFxq+Uj3JPDLBRb4AAAAAAACAPxoHLz2uGZS68CqPOo081zdJax46ehUquQAAgD8AAIA/TQMMviaWoD+73Le++MWEvrcEYb7mz5e9AAAAAAAAAACtitc+X/FMPxgUW73FkYi+esmPPAGDrTwAAAAAAAAAADMlNr32XCK6c2x7OQ0yyTMztpa7IG+UuAAAgD8AAIA/ADYnvOy55Lnm1Ky6iahxtnvd2rqQqd81AACAPwAAgD9mhoy8w41iugZe4LhckIY0TnpyO8xUADgAAIA/AACAP7qoYD5hpty85X5zO9Vw8bn/Tka+cbSeugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9bnaiv1qX0CUhpRSlIwBbJRN6AOMAXSUR0CdQQI/JNj9dX2UKGgGaAloD0MIcVRuopaGF8CUhpRSlGgVTRUBaBZHQJ1Bhw4sEq51fZQoaAZoCWgPQwgkY7X5f6k9QJSGlFKUaBVNJwFoFkdAnUU5UYKpk3V9lChoBmgJaA9DCI1/n3HhKEJAlIaUUpRoFU0nAWgWR0CdSOjv/io9dX2UKGgGaAloD0MIMbJkjuW9OkCUhpRSlGgVTRcBaBZHQJ1JLqqwQlN1fZQoaAZoCWgPQwhTWn9LgE9jQJSGlFKUaBVN6ANoFkdAnU+Xqu8sc3V9lChoBmgJaA9DCFgAUwaObWFAlIaUUpRoFU3oA2gWR0CdWNshxHXmdX2UKGgGaAloD0MIbjKqDGMrYECUhpRSlGgVTegDaBZHQJ1ZRZowmE51fZQoaAZoCWgPQwhszVZe8gthQJSGlFKUaBVN6ANoFkdAnV+t+CsfaHV9lChoBmgJaA9DCOwX7IZtQ0BAlIaUUpRoFU0UAWgWR0CdYepy6tkndX2UKGgGaAloD0MIHaz/c5gcXECUhpRSlGgVTegDaBZHQJ1jhFiKBNF1fZQoaAZoCWgPQwhWZd8VwatdQJSGlFKUaBVN6ANoFkdAnWak21lXinV9lChoBmgJaA9DCAYv+grSRmRAlIaUUpRoFU3oA2gWR0CdaKkvsZ5zdX2UKGgGaAloD0MIvMtFfKdoYECUhpRSlGgVTegDaBZHQJ1o6HgxagV1fZQoaAZoCWgPQwjK4v4j0z09QJSGlFKUaBVNBAFoFkdAnWkayjYZmHV9lChoBmgJaA9DCDBHj99bgGJAlIaUUpRoFU3oA2gWR0CdbO912aDxdX2UKGgGaAloD0MIRWYucHmjX0CUhpRSlGgVTegDaBZHQJ1thKh+OOt1fZQoaAZoCWgPQwhYkdEByU1jQJSGlFKUaBVN6ANoFkdAnXInS8an8HV9lChoBmgJaA9DCOUNMPMdckXAlIaUUpRoFU0SAWgWR0CdeFvrnkksdX2UKGgGaAloD0MItaZ5xykQWUCUhpRSlGgVTegDaBZHQJ1/4KZ2IO91fZQoaAZoCWgPQwiRnEzcqpBgQJSGlFKUaBVN6ANoFkdAnYCB0IToMnV9lChoBmgJaA9DCF36l6Qy+l5AlIaUUpRoFU3oA2gWR0CdhL7gsK9gdX2UKGgGaAloD0MI/wOsVbtnXECUhpRSlGgVTegDaBZHQJ2ImSU1Q691fZQoaAZoCWgPQwgaqIx/nw1hQJSGlFKUaBVN6ANoFkdAnYjhczImxHV9lChoBmgJaA9DCIDyd++oSTlAlIaUUpRoFU0kAWgWR0CdlP8s+V1PdX2UKGgGaAloD0MIJefEHtooXUCUhpRSlGgVTegDaBZHQJ2ZIs052hZ1fZQoaAZoCWgPQwhUrYVZaApiQJSGlFKUaBVN6ANoFkdAnaFJvLowEnV9lChoBmgJaA9DCPM8uDtrdl5AlIaUUpRoFU3oA2gWR0CdpAHbAUL2dX2UKGgGaAloD0MIl8XE5mNvYUCUhpRSlGgVTegDaBZHQJ3K1PUKArh1fZQoaAZoCWgPQwg9Ctej8JZhQJSGlFKUaBVN6ANoFkdAnc6OB+Wnj3V9lChoBmgJaA9DCEn1nV8UYmJAlIaUUpRoFU3oA2gWR0Cd0PBH09QodX2UKGgGaAloD0MITOFBs2smZECUhpRSlGgVTegDaBZHQJ3RMA4n4PB1fZQoaAZoCWgPQwgZraOqCT9dQJSGlFKUaBVN6ANoFkdAndYLIgeRxXV9lChoBmgJaA9DCAxcHmtG52BAlIaUUpRoFU3oA2gWR0Cd1svkzXSSdX2UKGgGaAloD0MIbAcj9gniYkCUhpRSlGgVTegDaBZHQJ3b/Lq2SdR1fZQoaAZoCWgPQwhHHogs0npMQJSGlFKUaBVNIAFoFkdAndz38wYcenV9lChoBmgJaA9DCK4Mqg1Obl1AlIaUUpRoFU3oA2gWR0Cd4jZ0CA+ZdX2UKGgGaAloD0MIqdkDrUBDYECUhpRSlGgVTegDaBZHQJ3pQkmhM8J1fZQoaAZoCWgPQwjqruyCQRNhQJSGlFKUaBVN6ANoFkdAne3sDnvDxnV9lChoBmgJaA9DCLcos0Em40pAlIaUUpRoFU0pAWgWR0Cd8OfbKzRhdX2UKGgGaAloD0MIi8HDtG+LYECUhpRSlGgVTegDaBZHQJ3xvEIgNgB1fZQoaAZoCWgPQwiGcqJdBTthQJSGlFKUaBVN6ANoFkdAnfH+85CF9XV9lChoBmgJaA9DCL74oj1eK2BAlIaUUpRoFU3oA2gWR0Cd/mC2c8T0dX2UKGgGaAloD0MIaauSyD5JX0CUhpRSlGgVTegDaBZHQJ4CjuhK15V1fZQoaAZoCWgPQwhiaeBHNVNjQJSGlFKUaBVN6ANoFkdAngq97fHgg3V9lChoBmgJaA9DCL/yID1FkGJAlIaUUpRoFU3oA2gWR0CeDYDCP6sRdX2UKGgGaAloD0MIcLVOXI6aZkCUhpRSlGgVTb0BaBZHQJ4SqubI91V1fZQoaAZoCWgPQwgZcQFolCJaQJSGlFKUaBVN6ANoFkdAnhNqJQ+EAnV9lChoBmgJaA9DCMsPXOUJamBAlIaUUpRoFU3oA2gWR0CeFf+mm+CcdX2UKGgGaAloD0MI0y8Rb51+X0CUhpRSlGgVTegDaBZHQJ4WRJ04iot1fZQoaAZoCWgPQwhK7UW0HZMmQJSGlFKUaBVNJAFoFkdAnhgy3LFGX3V9lChoBmgJaA9DCGrAIOnT91xAlIaUUpRoFU3oA2gWR0CeG48aXKKYdX2UKGgGaAloD0MIqwfMQ6YfXUCUhpRSlGgVTegDaBZHQJ4cTkxREWt1fZQoaAZoCWgPQwjA6siRzq1ZQJSGlFKUaBVN6ANoFkdAniHccQyylnV9lChoBmgJaA9DCOjewyXHdGJAlIaUUpRoFU3oA2gWR0CeKA5SWJJodX2UKGgGaAloD0MI2SYVjbX/YUCUhpRSlGgVTegDaBZHQJ4vKpAD7qJ1fZQoaAZoCWgPQwh646Qw741gQJSGlFKUaBVN6ANoFkdAnjPzfNzKcXV9lChoBmgJaA9DCMi2DDhLamJAlIaUUpRoFU3oA2gWR0CeNxV0tAcDdX2UKGgGaAloD0MIhqktdZAFX0CUhpRSlGgVTegDaBZHQJ44KnYQJ5V1fZQoaAZoCWgPQwgZ5ZmXw/9XQJSGlFKUaBVN6ANoFkdAnkNQAQxvenV9lChoBmgJaA9DCLmmQGZnCSNAlIaUUpRoFU0GAWgWR0CeRRtSAH3UdX2UKGgGaAloD0MIs7ES86wgY0CUhpRSlGgVTegDaBZHQJ5ODJwKjSJ1fZQoaAZoCWgPQwjc8LvplmZgQJSGlFKUaBVN6ANoFkdAnlDA5q/M4nV9lChoBmgJaA9DCPA0mfG2si1AlIaUUpRoFU0IAWgWR0Ceegm9xp+MdX2UKGgGaAloD0MICr3+JD5eX0CUhpRSlGgVTegDaBZHQJ56NTm4iHJ1fZQoaAZoCWgPQwi1iCgm7wtgQJSGlFKUaBVN6ANoFkdAnnrKR+z+m3V9lChoBmgJaA9DCGnjiLV4L2JAlIaUUpRoFU3oA2gWR0CefMsnRb8ndX2UKGgGaAloD0MIgCvZsRHNYUCUhpRSlGgVTegDaBZHQJ59A9ovi991fZQoaAZoCWgPQwj2RUJbTmFhQJSGlFKUaBVN6ANoFkdAnn6DNhVlw3V9lChoBmgJaA9DCIvgfyvZJ2BAlIaUUpRoFU3oA2gWR0CegQqlP8AJdX2UKGgGaAloD0MIFto5zQLrX0CUhpRSlGgVTegDaBZHQJ6BmSTyJ9B1fZQoaAZoCWgPQwih1jTvOAFCQJSGlFKUaBVNJwFoFkdAnoPeAAhjfHV9lChoBmgJaA9DCJ+sGK4OIDLAlIaUUpRoFUvKaBZHQJ6EQFOfukV1fZQoaAZoCWgPQwieYtUgzMNkQJSGlFKUaBVN6ANoFkdAnoW/e+Eh7nV9lChoBmgJaA9DCKcgPxs5BWFAlIaUUpRoFU3oA2gWR0Ceiw02cawVdX2UKGgGaAloD0MIj3HFxVFGXUCUhpRSlGgVTegDaBZHQJ6RnJyQxN91fZQoaAZoCWgPQwjc1hael4lbQJSGlFKUaBVN6ANoFkdAnpkl01ZTynV9lChoBmgJaA9DCNJyoIfasGVAlIaUUpRoFU3oA2gWR0CemjEQoTf0dX2UKGgGaAloD0MI2uIan8lqX0CUhpRSlGgVTegDaBZHQJ6oA0P6KtR1fZQoaAZoCWgPQwisb2Byo8g2wJSGlFKUaBVNLAFoFkdAnq7sj/uLJnV9lChoBmgJaA9DCA3+fjFb6mJAlIaUUpRoFU3oA2gWR0Ces/VT72tddX2UKGgGaAloD0MItRfRdkxOXkCUhpRSlGgVTegDaBZHQJ64U9U0elt1fZQoaAZoCWgPQwhJ9Z1flG5dQJSGlFKUaBVN6ANoFkdAnrjvM4cWCXV9lChoBmgJaA9DCMKKU60FpGJAlIaUUpRoFU3oA2gWR0CeuvVeruIAdX2UKGgGaAloD0MIlL2lnC9rXUCUhpRSlGgVTegDaBZHQJ67Lgiu+yt1fZQoaAZoCWgPQwgGD9O+Ob1jQJSGlFKUaBVN6ANoFkdAnrykroW56XV9lChoBmgJaA9DCN2YnrDEmV5AlIaUUpRoFU3oA2gWR0CevzQ0XP7fdX2UKGgGaAloD0MI9+Y3TDQENcCUhpRSlGgVTRcBaBZHQJ6/cQz1sch1fZQoaAZoCWgPQwi9GqA0VApkQJSGlFKUaBVN6ANoFkdAnr+/uG9HtnV9lChoBmgJaA9DCGlTdY9s419AlIaUUpRoFU3oA2gWR0CewdF0PpY+dX2UKGgGaAloD0MIKxa/KazoYkCUhpRSlGgVTegDaBZHQJ7CJqk/KQt1fZQoaAZoCWgPQwgdklooGepiQJSGlFKUaBVN6ANoFkdAnsNlwHZ9NXV9lChoBmgJaA9DCFfuBWaFBFxAlIaUUpRoFU3oA2gWR0CeyD6ltTDPdX2UKGgGaAloD0MIoRSt3AseYkCUhpRSlGgVTegDaBZHQJ7OWPgeii91fZQoaAZoCWgPQwjECUyndYliQJSGlFKUaBVN6ANoFkdAntX243FUAHV9lChoBmgJaA9DCGL03EJXjW1AlIaUUpRoFU1kAmgWR0Ce3oqwhW5pdX2UKGgGaAloD0MIePLpsS3IXUCUhpRSlGgVTegDaBZHQJ7mKowVTJh1fZQoaAZoCWgPQwiemPViKANhQJSGlFKUaBVN6ANoFkdAnvNhrJr+HnV9lChoBmgJaA9DCH78pUX9kWNAlIaUUpRoFU3oA2gWR0Ce+KLjghr4dX2UKGgGaAloD0MIh/2eWKcjY0CUhpRSlGgVTegDaBZHQJ75XsiSq2l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-AFSA.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef09d899f9e1097452cfee3dfbc7b1da5b63499d3603e17709018aafd0d20308
|
3 |
+
size 147155
|
ppo-LunarLander-v2-AFSA/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-AFSA/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcbad2dd8c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcbad2dd950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcbad2dd9e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcbad2dda70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcbad2ddb00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcbad2ddb90>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcbad2ddc20>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcbad2ddcb0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcbad2ddd40>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcbad2dddd0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcbad2dde60>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fcbad336180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1667865858284547135,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNLtb0Nd7A/iEBgvm4XiL68eKq9jKIqvAAAAAAAAAAAGhFnPVwfUjlHKMi7q+4/OGP2BTwKDUU2AACAPwAAgD/NHjq+9hs+O1dErDsKXvO48M4KvV06ADoAAIA/AACAP82skD1c0wK6XxrJuDn4ErRaYYw4ZZnnNwAAgD8AAIA/s2V1PcMpIbrKcQg5D/v6M+I2nDlK8Bq4AACAPwAAgD8zO0q8jx4iutKrEzrKOtc1XDikuCq5KrkAAIA/AACAP83Eqbv2FEm6eqOVO3OLtDb1EvA57vSsugAAgD8AAIA/mjyEPVIYp7kyxYK7PkmpNsAOGLuiQBq2AACAPwAAgD/NucQ8PWVeu6gsDTuXFxq+Uj3JPDLBRb4AAAAAAACAPxoHLz2uGZS68CqPOo081zdJax46ehUquQAAgD8AAIA/TQMMviaWoD+73Le++MWEvrcEYb7mz5e9AAAAAAAAAACtitc+X/FMPxgUW73FkYi+esmPPAGDrTwAAAAAAAAAADMlNr32XCK6c2x7OQ0yyTMztpa7IG+UuAAAgD8AAIA/ADYnvOy55Lnm1Ky6iahxtnvd2rqQqd81AACAPwAAgD9mhoy8w41iugZe4LhckIY0TnpyO8xUADgAAIA/AACAP7qoYD5hpty85X5zO9Vw8bn/Tka+cbSeugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9bnaiv1qX0CUhpRSlIwBbJRN6AOMAXSUR0CdQQI/JNj9dX2UKGgGaAloD0MIcVRuopaGF8CUhpRSlGgVTRUBaBZHQJ1Bhw4sEq51fZQoaAZoCWgPQwgkY7X5f6k9QJSGlFKUaBVNJwFoFkdAnUU5UYKpk3V9lChoBmgJaA9DCI1/n3HhKEJAlIaUUpRoFU0nAWgWR0CdSOjv/io9dX2UKGgGaAloD0MIMbJkjuW9OkCUhpRSlGgVTRcBaBZHQJ1JLqqwQlN1fZQoaAZoCWgPQwhTWn9LgE9jQJSGlFKUaBVN6ANoFkdAnU+Xqu8sc3V9lChoBmgJaA9DCFgAUwaObWFAlIaUUpRoFU3oA2gWR0CdWNshxHXmdX2UKGgGaAloD0MIbjKqDGMrYECUhpRSlGgVTegDaBZHQJ1ZRZowmE51fZQoaAZoCWgPQwhszVZe8gthQJSGlFKUaBVN6ANoFkdAnV+t+CsfaHV9lChoBmgJaA9DCOwX7IZtQ0BAlIaUUpRoFU0UAWgWR0CdYepy6tkndX2UKGgGaAloD0MIHaz/c5gcXECUhpRSlGgVTegDaBZHQJ1jhFiKBNF1fZQoaAZoCWgPQwhWZd8VwatdQJSGlFKUaBVN6ANoFkdAnWak21lXinV9lChoBmgJaA9DCAYv+grSRmRAlIaUUpRoFU3oA2gWR0CdaKkvsZ5zdX2UKGgGaAloD0MIvMtFfKdoYECUhpRSlGgVTegDaBZHQJ1o6HgxagV1fZQoaAZoCWgPQwjK4v4j0z09QJSGlFKUaBVNBAFoFkdAnWkayjYZmHV9lChoBmgJaA9DCDBHj99bgGJAlIaUUpRoFU3oA2gWR0CdbO912aDxdX2UKGgGaAloD0MIRWYucHmjX0CUhpRSlGgVTegDaBZHQJ1thKh+OOt1fZQoaAZoCWgPQwhYkdEByU1jQJSGlFKUaBVN6ANoFkdAnXInS8an8HV9lChoBmgJaA9DCOUNMPMdckXAlIaUUpRoFU0SAWgWR0CdeFvrnkksdX2UKGgGaAloD0MItaZ5xykQWUCUhpRSlGgVTegDaBZHQJ1/4KZ2IO91fZQoaAZoCWgPQwiRnEzcqpBgQJSGlFKUaBVN6ANoFkdAnYCB0IToMnV9lChoBmgJaA9DCF36l6Qy+l5AlIaUUpRoFU3oA2gWR0CdhL7gsK9gdX2UKGgGaAloD0MI/wOsVbtnXECUhpRSlGgVTegDaBZHQJ2ImSU1Q691fZQoaAZoCWgPQwgaqIx/nw1hQJSGlFKUaBVN6ANoFkdAnYjhczImxHV9lChoBmgJaA9DCIDyd++oSTlAlIaUUpRoFU0kAWgWR0CdlP8s+V1PdX2UKGgGaAloD0MIJefEHtooXUCUhpRSlGgVTegDaBZHQJ2ZIs052hZ1fZQoaAZoCWgPQwhUrYVZaApiQJSGlFKUaBVN6ANoFkdAnaFJvLowEnV9lChoBmgJaA9DCPM8uDtrdl5AlIaUUpRoFU3oA2gWR0CdpAHbAUL2dX2UKGgGaAloD0MIl8XE5mNvYUCUhpRSlGgVTegDaBZHQJ3K1PUKArh1fZQoaAZoCWgPQwg9Ctej8JZhQJSGlFKUaBVN6ANoFkdAnc6OB+Wnj3V9lChoBmgJaA9DCEn1nV8UYmJAlIaUUpRoFU3oA2gWR0Cd0PBH09QodX2UKGgGaAloD0MITOFBs2smZECUhpRSlGgVTegDaBZHQJ3RMA4n4PB1fZQoaAZoCWgPQwgZraOqCT9dQJSGlFKUaBVN6ANoFkdAndYLIgeRxXV9lChoBmgJaA9DCAxcHmtG52BAlIaUUpRoFU3oA2gWR0Cd1svkzXSSdX2UKGgGaAloD0MIbAcj9gniYkCUhpRSlGgVTegDaBZHQJ3b/Lq2SdR1fZQoaAZoCWgPQwhHHogs0npMQJSGlFKUaBVNIAFoFkdAndz38wYcenV9lChoBmgJaA9DCK4Mqg1Obl1AlIaUUpRoFU3oA2gWR0Cd4jZ0CA+ZdX2UKGgGaAloD0MIqdkDrUBDYECUhpRSlGgVTegDaBZHQJ3pQkmhM8J1fZQoaAZoCWgPQwjqruyCQRNhQJSGlFKUaBVN6ANoFkdAne3sDnvDxnV9lChoBmgJaA9DCLcos0Em40pAlIaUUpRoFU0pAWgWR0Cd8OfbKzRhdX2UKGgGaAloD0MIi8HDtG+LYECUhpRSlGgVTegDaBZHQJ3xvEIgNgB1fZQoaAZoCWgPQwiGcqJdBTthQJSGlFKUaBVN6ANoFkdAnfH+85CF9XV9lChoBmgJaA9DCL74oj1eK2BAlIaUUpRoFU3oA2gWR0Cd/mC2c8T0dX2UKGgGaAloD0MIaauSyD5JX0CUhpRSlGgVTegDaBZHQJ4CjuhK15V1fZQoaAZoCWgPQwhiaeBHNVNjQJSGlFKUaBVN6ANoFkdAngq97fHgg3V9lChoBmgJaA9DCL/yID1FkGJAlIaUUpRoFU3oA2gWR0CeDYDCP6sRdX2UKGgGaAloD0MIcLVOXI6aZkCUhpRSlGgVTb0BaBZHQJ4SqubI91V1fZQoaAZoCWgPQwgZcQFolCJaQJSGlFKUaBVN6ANoFkdAnhNqJQ+EAnV9lChoBmgJaA9DCMsPXOUJamBAlIaUUpRoFU3oA2gWR0CeFf+mm+CcdX2UKGgGaAloD0MI0y8Rb51+X0CUhpRSlGgVTegDaBZHQJ4WRJ04iot1fZQoaAZoCWgPQwhK7UW0HZMmQJSGlFKUaBVNJAFoFkdAnhgy3LFGX3V9lChoBmgJaA9DCGrAIOnT91xAlIaUUpRoFU3oA2gWR0CeG48aXKKYdX2UKGgGaAloD0MIqwfMQ6YfXUCUhpRSlGgVTegDaBZHQJ4cTkxREWt1fZQoaAZoCWgPQwjA6siRzq1ZQJSGlFKUaBVN6ANoFkdAniHccQyylnV9lChoBmgJaA9DCOjewyXHdGJAlIaUUpRoFU3oA2gWR0CeKA5SWJJodX2UKGgGaAloD0MI2SYVjbX/YUCUhpRSlGgVTegDaBZHQJ4vKpAD7qJ1fZQoaAZoCWgPQwh646Qw741gQJSGlFKUaBVN6ANoFkdAnjPzfNzKcXV9lChoBmgJaA9DCMi2DDhLamJAlIaUUpRoFU3oA2gWR0CeNxV0tAcDdX2UKGgGaAloD0MIhqktdZAFX0CUhpRSlGgVTegDaBZHQJ44KnYQJ5V1fZQoaAZoCWgPQwgZ5ZmXw/9XQJSGlFKUaBVN6ANoFkdAnkNQAQxvenV9lChoBmgJaA9DCLmmQGZnCSNAlIaUUpRoFU0GAWgWR0CeRRtSAH3UdX2UKGgGaAloD0MIs7ES86wgY0CUhpRSlGgVTegDaBZHQJ5ODJwKjSJ1fZQoaAZoCWgPQwjc8LvplmZgQJSGlFKUaBVN6ANoFkdAnlDA5q/M4nV9lChoBmgJaA9DCPA0mfG2si1AlIaUUpRoFU0IAWgWR0Ceegm9xp+MdX2UKGgGaAloD0MICr3+JD5eX0CUhpRSlGgVTegDaBZHQJ56NTm4iHJ1fZQoaAZoCWgPQwi1iCgm7wtgQJSGlFKUaBVN6ANoFkdAnnrKR+z+m3V9lChoBmgJaA9DCGnjiLV4L2JAlIaUUpRoFU3oA2gWR0CefMsnRb8ndX2UKGgGaAloD0MIgCvZsRHNYUCUhpRSlGgVTegDaBZHQJ59A9ovi991fZQoaAZoCWgPQwj2RUJbTmFhQJSGlFKUaBVN6ANoFkdAnn6DNhVlw3V9lChoBmgJaA9DCIvgfyvZJ2BAlIaUUpRoFU3oA2gWR0CegQqlP8AJdX2UKGgGaAloD0MIFto5zQLrX0CUhpRSlGgVTegDaBZHQJ6BmSTyJ9B1fZQoaAZoCWgPQwih1jTvOAFCQJSGlFKUaBVNJwFoFkdAnoPeAAhjfHV9lChoBmgJaA9DCJ+sGK4OIDLAlIaUUpRoFUvKaBZHQJ6EQFOfukV1fZQoaAZoCWgPQwieYtUgzMNkQJSGlFKUaBVN6ANoFkdAnoW/e+Eh7nV9lChoBmgJaA9DCKcgPxs5BWFAlIaUUpRoFU3oA2gWR0Ceiw02cawVdX2UKGgGaAloD0MIj3HFxVFGXUCUhpRSlGgVTegDaBZHQJ6RnJyQxN91fZQoaAZoCWgPQwjc1hael4lbQJSGlFKUaBVN6ANoFkdAnpkl01ZTynV9lChoBmgJaA9DCNJyoIfasGVAlIaUUpRoFU3oA2gWR0CemjEQoTf0dX2UKGgGaAloD0MI2uIan8lqX0CUhpRSlGgVTegDaBZHQJ6oA0P6KtR1fZQoaAZoCWgPQwisb2Byo8g2wJSGlFKUaBVNLAFoFkdAnq7sj/uLJnV9lChoBmgJaA9DCA3+fjFb6mJAlIaUUpRoFU3oA2gWR0Ces/VT72tddX2UKGgGaAloD0MItRfRdkxOXkCUhpRSlGgVTegDaBZHQJ64U9U0elt1fZQoaAZoCWgPQwhJ9Z1flG5dQJSGlFKUaBVN6ANoFkdAnrjvM4cWCXV9lChoBmgJaA9DCMKKU60FpGJAlIaUUpRoFU3oA2gWR0CeuvVeruIAdX2UKGgGaAloD0MIlL2lnC9rXUCUhpRSlGgVTegDaBZHQJ67Lgiu+yt1fZQoaAZoCWgPQwgGD9O+Ob1jQJSGlFKUaBVN6ANoFkdAnrykroW56XV9lChoBmgJaA9DCN2YnrDEmV5AlIaUUpRoFU3oA2gWR0CevzQ0XP7fdX2UKGgGaAloD0MI9+Y3TDQENcCUhpRSlGgVTRcBaBZHQJ6/cQz1sch1fZQoaAZoCWgPQwi9GqA0VApkQJSGlFKUaBVN6ANoFkdAnr+/uG9HtnV9lChoBmgJaA9DCGlTdY9s419AlIaUUpRoFU3oA2gWR0CewdF0PpY+dX2UKGgGaAloD0MIKxa/KazoYkCUhpRSlGgVTegDaBZHQJ7CJqk/KQt1fZQoaAZoCWgPQwgdklooGepiQJSGlFKUaBVN6ANoFkdAnsNlwHZ9NXV9lChoBmgJaA9DCFfuBWaFBFxAlIaUUpRoFU3oA2gWR0CeyD6ltTDPdX2UKGgGaAloD0MIoRSt3AseYkCUhpRSlGgVTegDaBZHQJ7OWPgeii91fZQoaAZoCWgPQwjECUyndYliQJSGlFKUaBVN6ANoFkdAntX243FUAHV9lChoBmgJaA9DCGL03EJXjW1AlIaUUpRoFU1kAmgWR0Ce3oqwhW5pdX2UKGgGaAloD0MIePLpsS3IXUCUhpRSlGgVTegDaBZHQJ7mKowVTJh1fZQoaAZoCWgPQwiemPViKANhQJSGlFKUaBVN6ANoFkdAnvNhrJr+HnV9lChoBmgJaA9DCH78pUX9kWNAlIaUUpRoFU3oA2gWR0Ce+KLjghr4dX2UKGgGaAloD0MIh/2eWKcjY0CUhpRSlGgVTegDaBZHQJ75XsiSq2l1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-AFSA/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:319c99d5333e61753c6a3d1da07eb58d7876353f6db82a67dada299ae3636599
|
3 |
+
size 87865
|
ppo-LunarLander-v2-AFSA/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c74825bb6a30034ae2d408273d68dc9a9330dc28ec2b66959463577f803e289
|
3 |
+
size 43201
|
ppo-LunarLander-v2-AFSA/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-AFSA/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (222 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 234.8386373208958, "std_reward": 22.669386103221186, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-08T00:40:34.896528"}
|