ArunAIML commited on
Commit
43e2729
1 Parent(s): 2f9e6bf

Lunar agent trained

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 258.26 +/- 22.78
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a0e8f12d120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a0e8f12d1b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a0e8f12d240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a0e8f12d2d0>", "_build": "<function ActorCriticPolicy._build at 0x7a0e8f12d360>", "forward": "<function ActorCriticPolicy.forward at 0x7a0e8f12d3f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a0e8f12d480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a0e8f12d510>", "_predict": "<function ActorCriticPolicy._predict at 0x7a0e8f12d5a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a0e8f12d630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a0e8f12d6c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a0e8f12d750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a0e8f128a80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719057814713192615, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBucD662G4+tYjQvYRPM76bZl89rlZbvQAAAAAAAAAAzUvjvLYxsj5n0kK96mWUvpj5BLwOcDg8AAAAAAAAAABNrjO+H9kqP05ttr3QDte+k0+0vYWC8z0AAAAAAAAAADPFVbw4qKi74oDbvGTKJT0rIuU8IuIIvgAAgD8AAIA/AAcEPpKXHT8zO/89F3i9vjOOoj0yr5y9AAAAAAAAAAD6pBg+T/9ZvHbfWLoKdW847g+5vbglkjkAAIA/AACAP82MSbyQm5c/InmfvbNQF7/5Ah+7Po6jPAAAAAAAAAAA5sklvh2P0z5CfcE+gmnTviv8KT5K3Bk+AAAAAAAAAAAmwjC++hGnP3Zshr6cWLq+7EByvuDgf74AAAAAAAAAAAAe9b1xiAm7hzAdvB6/XbpIwjY8xt8/OwAAgD8AAIA/PfxWvn6tgj8dB3++YrOovhiDwr5rRN+8AAAAAAAAAACAM7S9FAiKuh6dGLmaUxK0E0uZumJrMTgAAAAAAACAP5birD7i/0M/A76VPdYErL7dIlM+9iervQAAAAAAAAAASo99voOWeD/ioxO+wVzVvrPilr4HyIc+AAAAAAAAAABAoDu+W2WIvP7U+TquuCY5GJz1PRf+H7oAAIA/AACAP5otvTxJGl0/gtNSPRUHEr+t7zU87VlNvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGuSy2QXAOMAWyUS9mMAXSUR0CZtn+8oQWfdX2UKGgGR0BuOdzp5eJIaAdL6mgIR0CZtqm1YyO8dX2UKGgGR0BwFhRMvh60aAdL/GgIR0CZtukmhM8HdX2UKGgGR0Bxtli1AqusaAdL/mgIR0CZtycH4XXRdX2UKGgGR0BhRDI1cdHUaAdN6ANoCEdAmbjRacI7eXV9lChoBkdAcRYUAksz22gHS+ZoCEdAmbrNJe3QU3V9lChoBkdAbtFar3j+72gHS+1oCEdAmbrz+FUQ1HV9lChoBkdAcI3dSEUTMGgHS+poCEdAmbumKMvRJHV9lChoBkdAbndFjurp7mgHS+toCEdAmb5k5hjOLXV9lChoBkdAcW2OXE61cGgHS85oCEdAmb748lolEHV9lChoBkdAceqSLIgeR2gHS/BoCEdAmb/qkuYhMnV9lChoBkdAYt8yM1jy4GgHTegDaAhHQJnA4yxiXpp1fZQoaAZHQG6WiZnctXhoB0v9aAhHQJnA/6ab4Jx1fZQoaAZHQHDBshxHXmNoB00sAWgIR0CZwUoOx0MgdX2UKGgGR0Bw327yxzJZaAdL72gIR0CZwcCb+cYqdX2UKGgGR0BylkW+GoJiaAdNHwFoCEdAmcHS4nWrfnV9lChoBkdAcLRqUeMho2gHS/ZoCEdAmcQedXko4XV9lChoBkdAcWNDlHSWq2gHS/1oCEdAmcQ4I0IkaHV9lChoBkdAcUnBHTZxrGgHS/NoCEdAmcTTsIE8rHV9lChoBkdAcGt+WGATZmgHS+5oCEdAmcdtsBQvYnV9lChoBkdAcLK6E8JUpGgHTQABaAhHQJnIs4bS7Xh1fZQoaAZHQHI8I+KTB69oB0vnaAhHQJnJtKK508x1fZQoaAZHQHOfKJIlMRJoB00HAWgIR0CZygjfek57dX2UKGgGR0BxwmiJwbVCaAdL7mgIR0CZyhf51vETdX2UKGgGR0BxDff8/D+BaAdL4WgIR0CZymWsRxtIdX2UKGgGR0Bx0CEbo8p1aAdL/mgIR0CZy6N21UlzdX2UKGgGR0ByELL3bmEHaAdNDwFoCEdAmcu9ITXarXV9lChoBkdAbd7VvMr3CmgHS+9oCEdAmc2bkOqeb3V9lChoBkdAb/1O5avA5GgHS+BoCEdAmc25N0vGqHV9lChoBkdAWn3aRISUT2gHTegDaAhHQJnNzSpiqhl1fZQoaAZHQG6DYDLbHp9oB00AAWgIR0CZzlNwR5C4dX2UKGgGR0BYhuHFglWwaAdN6ANoCEdAmdB/CVKPGXV9lChoBkdAcW6qJ/G2kWgHS+loCEdAmdCQu27Wd3V9lChoBkdAY+hY5DJEIGgHTegDaAhHQJnRq2tuDSR1fZQoaAZHQHCxiPuG9HtoB0vMaAhHQJnRzhsImgJ1fZQoaAZHQHDHhxgiNbVoB0v6aAhHQJnSMdPtUn51fZQoaAZHQG7K1PepGWloB0vuaAhHQJnShZid8Rd1fZQoaAZHQHJ0zhDPWx1oB0vnaAhHQJnSz5tWMjx1fZQoaAZHQHBsFTBInShoB00BAWgIR0CZ00l8w5/9dX2UKGgGR0BvBCN4qwyJaAdL52gIR0CZ06/RVp9JdX2UKGgGR0Bu55of0VafaAdL82gIR0CZ1BpAUtZndX2UKGgGR0BxeR55Z8rqaAdLy2gIR0CZ1G5GBnSOdX2UKGgGR0Bj1e+0w8GLaAdN6ANoCEdAmdRvW1+iJ3V9lChoBkdAbv4TdLxqf2gHS9toCEdAmdTOOXE61nV9lChoBkdAcP8EQoTfzmgHS+ZoCEdAmdWQhnrY5HV9lChoBkdAchl/ustCiWgHS+FoCEdAmdcLOVxCIHV9lChoBkdAbbHk3CKrJmgHS91oCEdAmdgLE5yU93V9lChoBkdAcT4Hnlnyu2gHS9doCEdAmdhDbvgFYHV9lChoBkdAcecUrTYukGgHS/NoCEdAmdib0aqCH3V9lChoBkdAcrJzi0fHP2gHTRUBaAhHQJnYnArQPZt1fZQoaAZHQHBu73oLXtloB00EAWgIR0CZ2ga2nbZfdX2UKGgGR0Bux1vddmg8aAdL7GgIR0CZ2iA/cFhYdX2UKGgGR0Bifyb+cYqHaAdN6ANoCEdAmdpgFLWZqnV9lChoBkdAcx3RJEpiJGgHTQkBaAhHQJnaeU3XI2h1fZQoaAZHQHFx+FYdQwdoB0vtaAhHQJnai3Ytg8d1fZQoaAZHQG9aTz/ZM+NoB0vWaAhHQJnaopDu0C11fZQoaAZHQHBRUwaisXBoB0vxaAhHQJna/g3tKI11fZQoaAZHQHKkTSofjjtoB0veaAhHQJnbJ8ohIOJ1fZQoaAZHQHE71/6O5rhoB0v6aAhHQJnbdkMCtA91fZQoaAZHQG9tYKhL5ARoB0vuaAhHQJncLKgZjx11fZQoaAZHQG7jMK9f1HxoB0vWaAhHQJneAM6RyOt1fZQoaAZHQHC4PeHi3odoB0veaAhHQJneCfFrEcd1fZQoaAZHQHLEos7MgU1oB0vyaAhHQJnfJZIQOFx1fZQoaAZHQHIKEJfICEJoB00CAWgIR0CZ36YyfthNdX2UKGgGR0BtyAVXV9WqaAdL32gIR0CZ3/xAB1cMdX2UKGgGR0Bwnmm4y44IaAdL1GgIR0CZ4DVcUucudX2UKGgGR0Bwo+d+XqqwaAdL9GgIR0CZ4ON/OMVDdX2UKGgGR0Bwxe6lLvkSaAdL4WgIR0CZ4ZQGOdXldX2UKGgGR0BwHbGNrCWNaAdL22gIR0CZ4ayGi5/cdX2UKGgGR0Bw9GDJ2dNGaAdL/GgIR0CZ4dsGPgejdX2UKGgGR0BxrzOObRWtaAdNAQFoCEdAmeHyaJAMUnV9lChoBkdAcNS3G4qgAmgHS/1oCEdAmeIsBMi8nXV9lChoBkdAb5WUnogV5GgHS+NoCEdAmeKEHUtqYnV9lChoBkdAQetz2exwAGgHS9FoCEdAmeLrU9ZA6nV9lChoBkdAcPr6Skj5bmgHS+FoCEdAmeZZ+DvmYHV9lChoBkdAcroGRV6u4mgHS/loCEdAmelgHRkVe3V9lChoBkdAcSr6Ww/xD2gHS9poCEdAmemExh2GI3V9lChoBkdAcck052hZhmgHTRoBaAhHQJnr5n/T9bZ1fZQoaAZHQHGQY2CNCJJoB0vraAhHQJnsIHPeHi51fZQoaAZHQG/dnjhky1xoB0voaAhHQJnsL6wdKdx1fZQoaAZHQHFlwQ176YVoB0vZaAhHQJnsV0cOskp1fZQoaAZHQG6dDxCpm29oB0vyaAhHQJnsZ78ejmF1fZQoaAZHQHCFRradtl9oB01hAWgIR0CZ7Lt8NQTFdX2UKGgGR0ByBgC+10DEaAdNCQFoCEdAmezUUKzAvnV9lChoBkdAccFqz7di2GgHTSIBaAhHQJns4JjUd7x1fZQoaAZHQG89+TeO4oZoB0vzaAhHQJntC/Zdv891fZQoaAZHQHIGbonrpq1oB00VAWgIR0CZ7cJeVs1sdX2UKGgGR0BvJuNPxhDxaAdNBgFoCEdAme4qScLBsXV9lChoBkdAYZ3frrxAjmgHTegDaAhHQJnvPCJoCdV1fZQoaAZHQHEuezhP0qZoB00QAWgIR0CZ8KXyAhB7dX2UKGgGR0BwOGVLSNOuaAdLx2gIR0CZ8hMF2V3VdX2UKGgGR0BwKWCAc1fmaAdNAgFoCEdAmfI3XqZ+hHV9lChoBkdAb3eyB06o2mgHS+RoCEdAmfLTch1TznV9lChoBkdAb9JPxhDw6WgHS+JoCEdAmfMo3Ns3ynV9lChoBkdAcRKdyDIzWWgHS/loCEdAmfNjCDVYp3V9lChoBkdAbRfrkbPyCmgHS+toCEdAmfOHVG0/nnV9lChoBkdAcFqUW2w3YWgHS/RoCEdAmfPw6dUbUHV9lChoBkdAcKiw97ngYWgHS/5oCEdAmfQPRJEpiXV9lChoBkdAcRROnVG0/mgHS99oCEdAmfQhkI5YHXV9lChoBkdAccrIkJKJ22gHTRUBaAhHQJn0UFEAo5R1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9484a6faa1099a5ea271f3abafb33ed6540b142679b7d1e7a97e33cf1c9c27e
3
+ size 147991
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a0e8f12d120>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a0e8f12d1b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a0e8f12d240>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a0e8f12d2d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a0e8f12d360>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a0e8f12d3f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a0e8f12d480>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a0e8f12d510>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a0e8f12d5a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a0e8f12d630>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a0e8f12d6c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a0e8f12d750>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a0e8f128a80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1719057814713192615,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBucD662G4+tYjQvYRPM76bZl89rlZbvQAAAAAAAAAAzUvjvLYxsj5n0kK96mWUvpj5BLwOcDg8AAAAAAAAAABNrjO+H9kqP05ttr3QDte+k0+0vYWC8z0AAAAAAAAAADPFVbw4qKi74oDbvGTKJT0rIuU8IuIIvgAAgD8AAIA/AAcEPpKXHT8zO/89F3i9vjOOoj0yr5y9AAAAAAAAAAD6pBg+T/9ZvHbfWLoKdW847g+5vbglkjkAAIA/AACAP82MSbyQm5c/InmfvbNQF7/5Ah+7Po6jPAAAAAAAAAAA5sklvh2P0z5CfcE+gmnTviv8KT5K3Bk+AAAAAAAAAAAmwjC++hGnP3Zshr6cWLq+7EByvuDgf74AAAAAAAAAAAAe9b1xiAm7hzAdvB6/XbpIwjY8xt8/OwAAgD8AAIA/PfxWvn6tgj8dB3++YrOovhiDwr5rRN+8AAAAAAAAAACAM7S9FAiKuh6dGLmaUxK0E0uZumJrMTgAAAAAAACAP5birD7i/0M/A76VPdYErL7dIlM+9iervQAAAAAAAAAASo99voOWeD/ioxO+wVzVvrPilr4HyIc+AAAAAAAAAABAoDu+W2WIvP7U+TquuCY5GJz1PRf+H7oAAIA/AACAP5otvTxJGl0/gtNSPRUHEr+t7zU87VlNvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGuSy2QXAOMAWyUS9mMAXSUR0CZtn+8oQWfdX2UKGgGR0BuOdzp5eJIaAdL6mgIR0CZtqm1YyO8dX2UKGgGR0BwFhRMvh60aAdL/GgIR0CZtukmhM8HdX2UKGgGR0Bxtli1AqusaAdL/mgIR0CZtycH4XXRdX2UKGgGR0BhRDI1cdHUaAdN6ANoCEdAmbjRacI7eXV9lChoBkdAcRYUAksz22gHS+ZoCEdAmbrNJe3QU3V9lChoBkdAbtFar3j+72gHS+1oCEdAmbrz+FUQ1HV9lChoBkdAcI3dSEUTMGgHS+poCEdAmbumKMvRJHV9lChoBkdAbndFjurp7mgHS+toCEdAmb5k5hjOLXV9lChoBkdAcW2OXE61cGgHS85oCEdAmb748lolEHV9lChoBkdAceqSLIgeR2gHS/BoCEdAmb/qkuYhMnV9lChoBkdAYt8yM1jy4GgHTegDaAhHQJnA4yxiXpp1fZQoaAZHQG6WiZnctXhoB0v9aAhHQJnA/6ab4Jx1fZQoaAZHQHDBshxHXmNoB00sAWgIR0CZwUoOx0MgdX2UKGgGR0Bw327yxzJZaAdL72gIR0CZwcCb+cYqdX2UKGgGR0BylkW+GoJiaAdNHwFoCEdAmcHS4nWrfnV9lChoBkdAcLRqUeMho2gHS/ZoCEdAmcQedXko4XV9lChoBkdAcWNDlHSWq2gHS/1oCEdAmcQ4I0IkaHV9lChoBkdAcUnBHTZxrGgHS/NoCEdAmcTTsIE8rHV9lChoBkdAcGt+WGATZmgHS+5oCEdAmcdtsBQvYnV9lChoBkdAcLK6E8JUpGgHTQABaAhHQJnIs4bS7Xh1fZQoaAZHQHI8I+KTB69oB0vnaAhHQJnJtKK508x1fZQoaAZHQHOfKJIlMRJoB00HAWgIR0CZygjfek57dX2UKGgGR0BxwmiJwbVCaAdL7mgIR0CZyhf51vETdX2UKGgGR0BxDff8/D+BaAdL4WgIR0CZymWsRxtIdX2UKGgGR0Bx0CEbo8p1aAdL/mgIR0CZy6N21UlzdX2UKGgGR0ByELL3bmEHaAdNDwFoCEdAmcu9ITXarXV9lChoBkdAbd7VvMr3CmgHS+9oCEdAmc2bkOqeb3V9lChoBkdAb/1O5avA5GgHS+BoCEdAmc25N0vGqHV9lChoBkdAWn3aRISUT2gHTegDaAhHQJnNzSpiqhl1fZQoaAZHQG6DYDLbHp9oB00AAWgIR0CZzlNwR5C4dX2UKGgGR0BYhuHFglWwaAdN6ANoCEdAmdB/CVKPGXV9lChoBkdAcW6qJ/G2kWgHS+loCEdAmdCQu27Wd3V9lChoBkdAY+hY5DJEIGgHTegDaAhHQJnRq2tuDSR1fZQoaAZHQHCxiPuG9HtoB0vMaAhHQJnRzhsImgJ1fZQoaAZHQHDHhxgiNbVoB0v6aAhHQJnSMdPtUn51fZQoaAZHQG7K1PepGWloB0vuaAhHQJnShZid8Rd1fZQoaAZHQHJ0zhDPWx1oB0vnaAhHQJnSz5tWMjx1fZQoaAZHQHBsFTBInShoB00BAWgIR0CZ00l8w5/9dX2UKGgGR0BvBCN4qwyJaAdL52gIR0CZ06/RVp9JdX2UKGgGR0Bu55of0VafaAdL82gIR0CZ1BpAUtZndX2UKGgGR0BxeR55Z8rqaAdLy2gIR0CZ1G5GBnSOdX2UKGgGR0Bj1e+0w8GLaAdN6ANoCEdAmdRvW1+iJ3V9lChoBkdAbv4TdLxqf2gHS9toCEdAmdTOOXE61nV9lChoBkdAcP8EQoTfzmgHS+ZoCEdAmdWQhnrY5HV9lChoBkdAchl/ustCiWgHS+FoCEdAmdcLOVxCIHV9lChoBkdAbbHk3CKrJmgHS91oCEdAmdgLE5yU93V9lChoBkdAcT4Hnlnyu2gHS9doCEdAmdhDbvgFYHV9lChoBkdAcecUrTYukGgHS/NoCEdAmdib0aqCH3V9lChoBkdAcrJzi0fHP2gHTRUBaAhHQJnYnArQPZt1fZQoaAZHQHBu73oLXtloB00EAWgIR0CZ2ga2nbZfdX2UKGgGR0Bux1vddmg8aAdL7GgIR0CZ2iA/cFhYdX2UKGgGR0Bifyb+cYqHaAdN6ANoCEdAmdpgFLWZqnV9lChoBkdAcx3RJEpiJGgHTQkBaAhHQJnaeU3XI2h1fZQoaAZHQHFx+FYdQwdoB0vtaAhHQJnai3Ytg8d1fZQoaAZHQG9aTz/ZM+NoB0vWaAhHQJnaopDu0C11fZQoaAZHQHBRUwaisXBoB0vxaAhHQJna/g3tKI11fZQoaAZHQHKkTSofjjtoB0veaAhHQJnbJ8ohIOJ1fZQoaAZHQHE71/6O5rhoB0v6aAhHQJnbdkMCtA91fZQoaAZHQG9tYKhL5ARoB0vuaAhHQJncLKgZjx11fZQoaAZHQG7jMK9f1HxoB0vWaAhHQJneAM6RyOt1fZQoaAZHQHC4PeHi3odoB0veaAhHQJneCfFrEcd1fZQoaAZHQHLEos7MgU1oB0vyaAhHQJnfJZIQOFx1fZQoaAZHQHIKEJfICEJoB00CAWgIR0CZ36YyfthNdX2UKGgGR0BtyAVXV9WqaAdL32gIR0CZ3/xAB1cMdX2UKGgGR0Bwnmm4y44IaAdL1GgIR0CZ4DVcUucudX2UKGgGR0Bwo+d+XqqwaAdL9GgIR0CZ4ON/OMVDdX2UKGgGR0Bwxe6lLvkSaAdL4WgIR0CZ4ZQGOdXldX2UKGgGR0BwHbGNrCWNaAdL22gIR0CZ4ayGi5/cdX2UKGgGR0Bw9GDJ2dNGaAdL/GgIR0CZ4dsGPgejdX2UKGgGR0BxrzOObRWtaAdNAQFoCEdAmeHyaJAMUnV9lChoBkdAcNS3G4qgAmgHS/1oCEdAmeIsBMi8nXV9lChoBkdAb5WUnogV5GgHS+NoCEdAmeKEHUtqYnV9lChoBkdAQetz2exwAGgHS9FoCEdAmeLrU9ZA6nV9lChoBkdAcPr6Skj5bmgHS+FoCEdAmeZZ+DvmYHV9lChoBkdAcroGRV6u4mgHS/loCEdAmelgHRkVe3V9lChoBkdAcSr6Ww/xD2gHS9poCEdAmemExh2GI3V9lChoBkdAcck052hZhmgHTRoBaAhHQJnr5n/T9bZ1fZQoaAZHQHGQY2CNCJJoB0vraAhHQJnsIHPeHi51fZQoaAZHQG/dnjhky1xoB0voaAhHQJnsL6wdKdx1fZQoaAZHQHFlwQ176YVoB0vZaAhHQJnsV0cOskp1fZQoaAZHQG6dDxCpm29oB0vyaAhHQJnsZ78ejmF1fZQoaAZHQHCFRradtl9oB01hAWgIR0CZ7Lt8NQTFdX2UKGgGR0ByBgC+10DEaAdNCQFoCEdAmezUUKzAvnV9lChoBkdAccFqz7di2GgHTSIBaAhHQJns4JjUd7x1fZQoaAZHQG89+TeO4oZoB0vzaAhHQJntC/Zdv891fZQoaAZHQHIGbonrpq1oB00VAWgIR0CZ7cJeVs1sdX2UKGgGR0BvJuNPxhDxaAdNBgFoCEdAme4qScLBsXV9lChoBkdAYZ3frrxAjmgHTegDaAhHQJnvPCJoCdV1fZQoaAZHQHEuezhP0qZoB00QAWgIR0CZ8KXyAhB7dX2UKGgGR0BwOGVLSNOuaAdLx2gIR0CZ8hMF2V3VdX2UKGgGR0BwKWCAc1fmaAdNAgFoCEdAmfI3XqZ+hHV9lChoBkdAb3eyB06o2mgHS+RoCEdAmfLTch1TznV9lChoBkdAb9JPxhDw6WgHS+JoCEdAmfMo3Ns3ynV9lChoBkdAcRKdyDIzWWgHS/loCEdAmfNjCDVYp3V9lChoBkdAbRfrkbPyCmgHS+toCEdAmfOHVG0/nnV9lChoBkdAcFqUW2w3YWgHS/RoCEdAmfPw6dUbUHV9lChoBkdAcKiw97ngYWgHS/5oCEdAmfQPRJEpiXV9lChoBkdAcRROnVG0/mgHS99oCEdAmfQhkI5YHXV9lChoBkdAccrIkJKJ22gHTRUBaAhHQJn0UFEAo5R1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c89d0d83d0655997cc5fb836496de33b8c23182bbe1b7ec540756d92b8cf4b2
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:218fa9e84ae76113f08808973785262336c8adec080aa9ce0261083ec105f008
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (118 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 258.2626432, "std_reward": 22.78160752301383, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-22T12:36:15.096082"}