Lunar agent trained
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 258.26 +/- 22.78
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a0e8f12d120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a0e8f12d1b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a0e8f12d240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a0e8f12d2d0>", "_build": "<function ActorCriticPolicy._build at 0x7a0e8f12d360>", "forward": "<function ActorCriticPolicy.forward at 0x7a0e8f12d3f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a0e8f12d480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a0e8f12d510>", "_predict": "<function ActorCriticPolicy._predict at 0x7a0e8f12d5a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a0e8f12d630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a0e8f12d6c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a0e8f12d750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a0e8f128a80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719057814713192615, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBucD662G4+tYjQvYRPM76bZl89rlZbvQAAAAAAAAAAzUvjvLYxsj5n0kK96mWUvpj5BLwOcDg8AAAAAAAAAABNrjO+H9kqP05ttr3QDte+k0+0vYWC8z0AAAAAAAAAADPFVbw4qKi74oDbvGTKJT0rIuU8IuIIvgAAgD8AAIA/AAcEPpKXHT8zO/89F3i9vjOOoj0yr5y9AAAAAAAAAAD6pBg+T/9ZvHbfWLoKdW847g+5vbglkjkAAIA/AACAP82MSbyQm5c/InmfvbNQF7/5Ah+7Po6jPAAAAAAAAAAA5sklvh2P0z5CfcE+gmnTviv8KT5K3Bk+AAAAAAAAAAAmwjC++hGnP3Zshr6cWLq+7EByvuDgf74AAAAAAAAAAAAe9b1xiAm7hzAdvB6/XbpIwjY8xt8/OwAAgD8AAIA/PfxWvn6tgj8dB3++YrOovhiDwr5rRN+8AAAAAAAAAACAM7S9FAiKuh6dGLmaUxK0E0uZumJrMTgAAAAAAACAP5birD7i/0M/A76VPdYErL7dIlM+9iervQAAAAAAAAAASo99voOWeD/ioxO+wVzVvrPilr4HyIc+AAAAAAAAAABAoDu+W2WIvP7U+TquuCY5GJz1PRf+H7oAAIA/AACAP5otvTxJGl0/gtNSPRUHEr+t7zU87VlNvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGuSy2QXAOMAWyUS9mMAXSUR0CZtn+8oQWfdX2UKGgGR0BuOdzp5eJIaAdL6mgIR0CZtqm1YyO8dX2UKGgGR0BwFhRMvh60aAdL/GgIR0CZtukmhM8HdX2UKGgGR0Bxtli1AqusaAdL/mgIR0CZtycH4XXRdX2UKGgGR0BhRDI1cdHUaAdN6ANoCEdAmbjRacI7eXV9lChoBkdAcRYUAksz22gHS+ZoCEdAmbrNJe3QU3V9lChoBkdAbtFar3j+72gHS+1oCEdAmbrz+FUQ1HV9lChoBkdAcI3dSEUTMGgHS+poCEdAmbumKMvRJHV9lChoBkdAbndFjurp7mgHS+toCEdAmb5k5hjOLXV9lChoBkdAcW2OXE61cGgHS85oCEdAmb748lolEHV9lChoBkdAceqSLIgeR2gHS/BoCEdAmb/qkuYhMnV9lChoBkdAYt8yM1jy4GgHTegDaAhHQJnA4yxiXpp1fZQoaAZHQG6WiZnctXhoB0v9aAhHQJnA/6ab4Jx1fZQoaAZHQHDBshxHXmNoB00sAWgIR0CZwUoOx0MgdX2UKGgGR0Bw327yxzJZaAdL72gIR0CZwcCb+cYqdX2UKGgGR0BylkW+GoJiaAdNHwFoCEdAmcHS4nWrfnV9lChoBkdAcLRqUeMho2gHS/ZoCEdAmcQedXko4XV9lChoBkdAcWNDlHSWq2gHS/1oCEdAmcQ4I0IkaHV9lChoBkdAcUnBHTZxrGgHS/NoCEdAmcTTsIE8rHV9lChoBkdAcGt+WGATZmgHS+5oCEdAmcdtsBQvYnV9lChoBkdAcLK6E8JUpGgHTQABaAhHQJnIs4bS7Xh1fZQoaAZHQHI8I+KTB69oB0vnaAhHQJnJtKK508x1fZQoaAZHQHOfKJIlMRJoB00HAWgIR0CZygjfek57dX2UKGgGR0BxwmiJwbVCaAdL7mgIR0CZyhf51vETdX2UKGgGR0BxDff8/D+BaAdL4WgIR0CZymWsRxtIdX2UKGgGR0Bx0CEbo8p1aAdL/mgIR0CZy6N21UlzdX2UKGgGR0ByELL3bmEHaAdNDwFoCEdAmcu9ITXarXV9lChoBkdAbd7VvMr3CmgHS+9oCEdAmc2bkOqeb3V9lChoBkdAb/1O5avA5GgHS+BoCEdAmc25N0vGqHV9lChoBkdAWn3aRISUT2gHTegDaAhHQJnNzSpiqhl1fZQoaAZHQG6DYDLbHp9oB00AAWgIR0CZzlNwR5C4dX2UKGgGR0BYhuHFglWwaAdN6ANoCEdAmdB/CVKPGXV9lChoBkdAcW6qJ/G2kWgHS+loCEdAmdCQu27Wd3V9lChoBkdAY+hY5DJEIGgHTegDaAhHQJnRq2tuDSR1fZQoaAZHQHCxiPuG9HtoB0vMaAhHQJnRzhsImgJ1fZQoaAZHQHDHhxgiNbVoB0v6aAhHQJnSMdPtUn51fZQoaAZHQG7K1PepGWloB0vuaAhHQJnShZid8Rd1fZQoaAZHQHJ0zhDPWx1oB0vnaAhHQJnSz5tWMjx1fZQoaAZHQHBsFTBInShoB00BAWgIR0CZ00l8w5/9dX2UKGgGR0BvBCN4qwyJaAdL52gIR0CZ06/RVp9JdX2UKGgGR0Bu55of0VafaAdL82gIR0CZ1BpAUtZndX2UKGgGR0BxeR55Z8rqaAdLy2gIR0CZ1G5GBnSOdX2UKGgGR0Bj1e+0w8GLaAdN6ANoCEdAmdRvW1+iJ3V9lChoBkdAbv4TdLxqf2gHS9toCEdAmdTOOXE61nV9lChoBkdAcP8EQoTfzmgHS+ZoCEdAmdWQhnrY5HV9lChoBkdAchl/ustCiWgHS+FoCEdAmdcLOVxCIHV9lChoBkdAbbHk3CKrJmgHS91oCEdAmdgLE5yU93V9lChoBkdAcT4Hnlnyu2gHS9doCEdAmdhDbvgFYHV9lChoBkdAcecUrTYukGgHS/NoCEdAmdib0aqCH3V9lChoBkdAcrJzi0fHP2gHTRUBaAhHQJnYnArQPZt1fZQoaAZHQHBu73oLXtloB00EAWgIR0CZ2ga2nbZfdX2UKGgGR0Bux1vddmg8aAdL7GgIR0CZ2iA/cFhYdX2UKGgGR0Bifyb+cYqHaAdN6ANoCEdAmdpgFLWZqnV9lChoBkdAcx3RJEpiJGgHTQkBaAhHQJnaeU3XI2h1fZQoaAZHQHFx+FYdQwdoB0vtaAhHQJnai3Ytg8d1fZQoaAZHQG9aTz/ZM+NoB0vWaAhHQJnaopDu0C11fZQoaAZHQHBRUwaisXBoB0vxaAhHQJna/g3tKI11fZQoaAZHQHKkTSofjjtoB0veaAhHQJnbJ8ohIOJ1fZQoaAZHQHE71/6O5rhoB0v6aAhHQJnbdkMCtA91fZQoaAZHQG9tYKhL5ARoB0vuaAhHQJncLKgZjx11fZQoaAZHQG7jMK9f1HxoB0vWaAhHQJneAM6RyOt1fZQoaAZHQHC4PeHi3odoB0veaAhHQJneCfFrEcd1fZQoaAZHQHLEos7MgU1oB0vyaAhHQJnfJZIQOFx1fZQoaAZHQHIKEJfICEJoB00CAWgIR0CZ36YyfthNdX2UKGgGR0BtyAVXV9WqaAdL32gIR0CZ3/xAB1cMdX2UKGgGR0Bwnmm4y44IaAdL1GgIR0CZ4DVcUucudX2UKGgGR0Bwo+d+XqqwaAdL9GgIR0CZ4ON/OMVDdX2UKGgGR0Bwxe6lLvkSaAdL4WgIR0CZ4ZQGOdXldX2UKGgGR0BwHbGNrCWNaAdL22gIR0CZ4ayGi5/cdX2UKGgGR0Bw9GDJ2dNGaAdL/GgIR0CZ4dsGPgejdX2UKGgGR0BxrzOObRWtaAdNAQFoCEdAmeHyaJAMUnV9lChoBkdAcNS3G4qgAmgHS/1oCEdAmeIsBMi8nXV9lChoBkdAb5WUnogV5GgHS+NoCEdAmeKEHUtqYnV9lChoBkdAQetz2exwAGgHS9FoCEdAmeLrU9ZA6nV9lChoBkdAcPr6Skj5bmgHS+FoCEdAmeZZ+DvmYHV9lChoBkdAcroGRV6u4mgHS/loCEdAmelgHRkVe3V9lChoBkdAcSr6Ww/xD2gHS9poCEdAmemExh2GI3V9lChoBkdAcck052hZhmgHTRoBaAhHQJnr5n/T9bZ1fZQoaAZHQHGQY2CNCJJoB0vraAhHQJnsIHPeHi51fZQoaAZHQG/dnjhky1xoB0voaAhHQJnsL6wdKdx1fZQoaAZHQHFlwQ176YVoB0vZaAhHQJnsV0cOskp1fZQoaAZHQG6dDxCpm29oB0vyaAhHQJnsZ78ejmF1fZQoaAZHQHCFRradtl9oB01hAWgIR0CZ7Lt8NQTFdX2UKGgGR0ByBgC+10DEaAdNCQFoCEdAmezUUKzAvnV9lChoBkdAccFqz7di2GgHTSIBaAhHQJns4JjUd7x1fZQoaAZHQG89+TeO4oZoB0vzaAhHQJntC/Zdv891fZQoaAZHQHIGbonrpq1oB00VAWgIR0CZ7cJeVs1sdX2UKGgGR0BvJuNPxhDxaAdNBgFoCEdAme4qScLBsXV9lChoBkdAYZ3frrxAjmgHTegDaAhHQJnvPCJoCdV1fZQoaAZHQHEuezhP0qZoB00QAWgIR0CZ8KXyAhB7dX2UKGgGR0BwOGVLSNOuaAdLx2gIR0CZ8hMF2V3VdX2UKGgGR0BwKWCAc1fmaAdNAgFoCEdAmfI3XqZ+hHV9lChoBkdAb3eyB06o2mgHS+RoCEdAmfLTch1TznV9lChoBkdAb9JPxhDw6WgHS+JoCEdAmfMo3Ns3ynV9lChoBkdAcRKdyDIzWWgHS/loCEdAmfNjCDVYp3V9lChoBkdAbRfrkbPyCmgHS+toCEdAmfOHVG0/nnV9lChoBkdAcFqUW2w3YWgHS/RoCEdAmfPw6dUbUHV9lChoBkdAcKiw97ngYWgHS/5oCEdAmfQPRJEpiXV9lChoBkdAcRROnVG0/mgHS99oCEdAmfQhkI5YHXV9lChoBkdAccrIkJKJ22gHTRUBaAhHQJn0UFEAo5R1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9484a6faa1099a5ea271f3abafb33ed6540b142679b7d1e7a97e33cf1c9c27e
|
3 |
+
size 147991
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a0e8f12d120>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a0e8f12d1b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a0e8f12d240>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a0e8f12d2d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a0e8f12d360>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a0e8f12d3f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a0e8f12d480>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a0e8f12d510>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a0e8f12d5a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a0e8f12d630>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a0e8f12d6c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a0e8f12d750>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a0e8f128a80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1719057814713192615,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBucD662G4+tYjQvYRPM76bZl89rlZbvQAAAAAAAAAAzUvjvLYxsj5n0kK96mWUvpj5BLwOcDg8AAAAAAAAAABNrjO+H9kqP05ttr3QDte+k0+0vYWC8z0AAAAAAAAAADPFVbw4qKi74oDbvGTKJT0rIuU8IuIIvgAAgD8AAIA/AAcEPpKXHT8zO/89F3i9vjOOoj0yr5y9AAAAAAAAAAD6pBg+T/9ZvHbfWLoKdW847g+5vbglkjkAAIA/AACAP82MSbyQm5c/InmfvbNQF7/5Ah+7Po6jPAAAAAAAAAAA5sklvh2P0z5CfcE+gmnTviv8KT5K3Bk+AAAAAAAAAAAmwjC++hGnP3Zshr6cWLq+7EByvuDgf74AAAAAAAAAAAAe9b1xiAm7hzAdvB6/XbpIwjY8xt8/OwAAgD8AAIA/PfxWvn6tgj8dB3++YrOovhiDwr5rRN+8AAAAAAAAAACAM7S9FAiKuh6dGLmaUxK0E0uZumJrMTgAAAAAAACAP5birD7i/0M/A76VPdYErL7dIlM+9iervQAAAAAAAAAASo99voOWeD/ioxO+wVzVvrPilr4HyIc+AAAAAAAAAABAoDu+W2WIvP7U+TquuCY5GJz1PRf+H7oAAIA/AACAP5otvTxJGl0/gtNSPRUHEr+t7zU87VlNvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGuSy2QXAOMAWyUS9mMAXSUR0CZtn+8oQWfdX2UKGgGR0BuOdzp5eJIaAdL6mgIR0CZtqm1YyO8dX2UKGgGR0BwFhRMvh60aAdL/GgIR0CZtukmhM8HdX2UKGgGR0Bxtli1AqusaAdL/mgIR0CZtycH4XXRdX2UKGgGR0BhRDI1cdHUaAdN6ANoCEdAmbjRacI7eXV9lChoBkdAcRYUAksz22gHS+ZoCEdAmbrNJe3QU3V9lChoBkdAbtFar3j+72gHS+1oCEdAmbrz+FUQ1HV9lChoBkdAcI3dSEUTMGgHS+poCEdAmbumKMvRJHV9lChoBkdAbndFjurp7mgHS+toCEdAmb5k5hjOLXV9lChoBkdAcW2OXE61cGgHS85oCEdAmb748lolEHV9lChoBkdAceqSLIgeR2gHS/BoCEdAmb/qkuYhMnV9lChoBkdAYt8yM1jy4GgHTegDaAhHQJnA4yxiXpp1fZQoaAZHQG6WiZnctXhoB0v9aAhHQJnA/6ab4Jx1fZQoaAZHQHDBshxHXmNoB00sAWgIR0CZwUoOx0MgdX2UKGgGR0Bw327yxzJZaAdL72gIR0CZwcCb+cYqdX2UKGgGR0BylkW+GoJiaAdNHwFoCEdAmcHS4nWrfnV9lChoBkdAcLRqUeMho2gHS/ZoCEdAmcQedXko4XV9lChoBkdAcWNDlHSWq2gHS/1oCEdAmcQ4I0IkaHV9lChoBkdAcUnBHTZxrGgHS/NoCEdAmcTTsIE8rHV9lChoBkdAcGt+WGATZmgHS+5oCEdAmcdtsBQvYnV9lChoBkdAcLK6E8JUpGgHTQABaAhHQJnIs4bS7Xh1fZQoaAZHQHI8I+KTB69oB0vnaAhHQJnJtKK508x1fZQoaAZHQHOfKJIlMRJoB00HAWgIR0CZygjfek57dX2UKGgGR0BxwmiJwbVCaAdL7mgIR0CZyhf51vETdX2UKGgGR0BxDff8/D+BaAdL4WgIR0CZymWsRxtIdX2UKGgGR0Bx0CEbo8p1aAdL/mgIR0CZy6N21UlzdX2UKGgGR0ByELL3bmEHaAdNDwFoCEdAmcu9ITXarXV9lChoBkdAbd7VvMr3CmgHS+9oCEdAmc2bkOqeb3V9lChoBkdAb/1O5avA5GgHS+BoCEdAmc25N0vGqHV9lChoBkdAWn3aRISUT2gHTegDaAhHQJnNzSpiqhl1fZQoaAZHQG6DYDLbHp9oB00AAWgIR0CZzlNwR5C4dX2UKGgGR0BYhuHFglWwaAdN6ANoCEdAmdB/CVKPGXV9lChoBkdAcW6qJ/G2kWgHS+loCEdAmdCQu27Wd3V9lChoBkdAY+hY5DJEIGgHTegDaAhHQJnRq2tuDSR1fZQoaAZHQHCxiPuG9HtoB0vMaAhHQJnRzhsImgJ1fZQoaAZHQHDHhxgiNbVoB0v6aAhHQJnSMdPtUn51fZQoaAZHQG7K1PepGWloB0vuaAhHQJnShZid8Rd1fZQoaAZHQHJ0zhDPWx1oB0vnaAhHQJnSz5tWMjx1fZQoaAZHQHBsFTBInShoB00BAWgIR0CZ00l8w5/9dX2UKGgGR0BvBCN4qwyJaAdL52gIR0CZ06/RVp9JdX2UKGgGR0Bu55of0VafaAdL82gIR0CZ1BpAUtZndX2UKGgGR0BxeR55Z8rqaAdLy2gIR0CZ1G5GBnSOdX2UKGgGR0Bj1e+0w8GLaAdN6ANoCEdAmdRvW1+iJ3V9lChoBkdAbv4TdLxqf2gHS9toCEdAmdTOOXE61nV9lChoBkdAcP8EQoTfzmgHS+ZoCEdAmdWQhnrY5HV9lChoBkdAchl/ustCiWgHS+FoCEdAmdcLOVxCIHV9lChoBkdAbbHk3CKrJmgHS91oCEdAmdgLE5yU93V9lChoBkdAcT4Hnlnyu2gHS9doCEdAmdhDbvgFYHV9lChoBkdAcecUrTYukGgHS/NoCEdAmdib0aqCH3V9lChoBkdAcrJzi0fHP2gHTRUBaAhHQJnYnArQPZt1fZQoaAZHQHBu73oLXtloB00EAWgIR0CZ2ga2nbZfdX2UKGgGR0Bux1vddmg8aAdL7GgIR0CZ2iA/cFhYdX2UKGgGR0Bifyb+cYqHaAdN6ANoCEdAmdpgFLWZqnV9lChoBkdAcx3RJEpiJGgHTQkBaAhHQJnaeU3XI2h1fZQoaAZHQHFx+FYdQwdoB0vtaAhHQJnai3Ytg8d1fZQoaAZHQG9aTz/ZM+NoB0vWaAhHQJnaopDu0C11fZQoaAZHQHBRUwaisXBoB0vxaAhHQJna/g3tKI11fZQoaAZHQHKkTSofjjtoB0veaAhHQJnbJ8ohIOJ1fZQoaAZHQHE71/6O5rhoB0v6aAhHQJnbdkMCtA91fZQoaAZHQG9tYKhL5ARoB0vuaAhHQJncLKgZjx11fZQoaAZHQG7jMK9f1HxoB0vWaAhHQJneAM6RyOt1fZQoaAZHQHC4PeHi3odoB0veaAhHQJneCfFrEcd1fZQoaAZHQHLEos7MgU1oB0vyaAhHQJnfJZIQOFx1fZQoaAZHQHIKEJfICEJoB00CAWgIR0CZ36YyfthNdX2UKGgGR0BtyAVXV9WqaAdL32gIR0CZ3/xAB1cMdX2UKGgGR0Bwnmm4y44IaAdL1GgIR0CZ4DVcUucudX2UKGgGR0Bwo+d+XqqwaAdL9GgIR0CZ4ON/OMVDdX2UKGgGR0Bwxe6lLvkSaAdL4WgIR0CZ4ZQGOdXldX2UKGgGR0BwHbGNrCWNaAdL22gIR0CZ4ayGi5/cdX2UKGgGR0Bw9GDJ2dNGaAdL/GgIR0CZ4dsGPgejdX2UKGgGR0BxrzOObRWtaAdNAQFoCEdAmeHyaJAMUnV9lChoBkdAcNS3G4qgAmgHS/1oCEdAmeIsBMi8nXV9lChoBkdAb5WUnogV5GgHS+NoCEdAmeKEHUtqYnV9lChoBkdAQetz2exwAGgHS9FoCEdAmeLrU9ZA6nV9lChoBkdAcPr6Skj5bmgHS+FoCEdAmeZZ+DvmYHV9lChoBkdAcroGRV6u4mgHS/loCEdAmelgHRkVe3V9lChoBkdAcSr6Ww/xD2gHS9poCEdAmemExh2GI3V9lChoBkdAcck052hZhmgHTRoBaAhHQJnr5n/T9bZ1fZQoaAZHQHGQY2CNCJJoB0vraAhHQJnsIHPeHi51fZQoaAZHQG/dnjhky1xoB0voaAhHQJnsL6wdKdx1fZQoaAZHQHFlwQ176YVoB0vZaAhHQJnsV0cOskp1fZQoaAZHQG6dDxCpm29oB0vyaAhHQJnsZ78ejmF1fZQoaAZHQHCFRradtl9oB01hAWgIR0CZ7Lt8NQTFdX2UKGgGR0ByBgC+10DEaAdNCQFoCEdAmezUUKzAvnV9lChoBkdAccFqz7di2GgHTSIBaAhHQJns4JjUd7x1fZQoaAZHQG89+TeO4oZoB0vzaAhHQJntC/Zdv891fZQoaAZHQHIGbonrpq1oB00VAWgIR0CZ7cJeVs1sdX2UKGgGR0BvJuNPxhDxaAdNBgFoCEdAme4qScLBsXV9lChoBkdAYZ3frrxAjmgHTegDaAhHQJnvPCJoCdV1fZQoaAZHQHEuezhP0qZoB00QAWgIR0CZ8KXyAhB7dX2UKGgGR0BwOGVLSNOuaAdLx2gIR0CZ8hMF2V3VdX2UKGgGR0BwKWCAc1fmaAdNAgFoCEdAmfI3XqZ+hHV9lChoBkdAb3eyB06o2mgHS+RoCEdAmfLTch1TznV9lChoBkdAb9JPxhDw6WgHS+JoCEdAmfMo3Ns3ynV9lChoBkdAcRKdyDIzWWgHS/loCEdAmfNjCDVYp3V9lChoBkdAbRfrkbPyCmgHS+toCEdAmfOHVG0/nnV9lChoBkdAcFqUW2w3YWgHS/RoCEdAmfPw6dUbUHV9lChoBkdAcKiw97ngYWgHS/5oCEdAmfQPRJEpiXV9lChoBkdAcRROnVG0/mgHS99oCEdAmfQhkI5YHXV9lChoBkdAccrIkJKJ22gHTRUBaAhHQJn0UFEAo5R1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c89d0d83d0655997cc5fb836496de33b8c23182bbe1b7ec540756d92b8cf4b2
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:218fa9e84ae76113f08808973785262336c8adec080aa9ce0261083ec105f008
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (118 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 258.2626432, "std_reward": 22.78160752301383, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-22T12:36:15.096082"}
|