{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a6ef5271480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a6ef5271510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a6ef52715a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a6ef5271630>", "_build": "<function ActorCriticPolicy._build at 0x7a6ef52716c0>", "forward": "<function ActorCriticPolicy.forward at 0x7a6ef5271750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a6ef52717e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a6ef5271870>", "_predict": "<function ActorCriticPolicy._predict at 0x7a6ef5271900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a6ef5271990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a6ef5271a20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a6ef5271ab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a6ef5209680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723371430824091963, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACU+b2HZVo/sMZ4PNx7xr4IMMC8JgGPPAAAAAAAAAAAGooKPWwCj7tQTLa7+QCoPOz977xMP449AACAPwAAgD/NDLy5+cApPjuRozz8yle+etaovL2Tzb0AAAAAAAAAAM0KX70ow44+/kMSuzS0m75cVoE8npuRvQAAAAAAAAAAmsHqO3gKrj8qO8k7Pc63vlLWHrs47f49AAAAAAAAAADNrDG6GCnvPTYLpT1doFm+nzGPPS2fWjwAAAAAAAAAAEAGlT1I/5m6rv+KOfGdhzQqdWs5Fn2guAAAgD8AAIA/WhwIvif2dj9UZS++1IPEvm5wcb6y0Ua9AAAAAAAAAAAA4aG8KVQ+ujOBeLUjWcOwsDilO+sOujQAAIA/AACAP80QB7wZ/wo/ov6WPetCi74gTok9ex3hPAAAAAAAAAAAGi9YPdhwqz+iCTY+iZnpvvyCiD3r2BA+AAAAAAAAAABNQsa9gIzCPl03az0ja0m+VuShO+5I2r0AAAAAAAAAAHMt7T15E0Y/QA1kO05oor65y8c95WdFvQAAAAAAAAAAJv+APtuRCD9NZS6+wemFvkRSVz3Kni08AAAAAAAAAADmWQu9lN2nPjeGtjwjb4S+t3m/uVGlxr0AAAAAAAAAAPNNhj2POi28Oj4kvVeoCj1nD5G9i7LePQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDXXnhbW3CMAWyUTU8BjAF0lEdAk5n89wFTvXV9lChoBkdAI9Pjfek562gHS9hoCEdAk5oDjR2KVXV9lChoBkdAcnzF/QSi/WgHTR4BaAhHQJOaSzollbx1fZQoaAZHQHJ39E9dNWVoB00TAWgIR0CTmxBv73wkdX2UKGgGR0ByVpGx2SuAaAdNOAFoCEdAk5tBMi8nNXV9lChoBkdAceeX2/SH/WgHTR8BaAhHQJObiT6i0v51fZQoaAZHQHA9NEb5uZVoB00rAWgIR0CTm4hh6SkkdX2UKGgGR0Bu3SfnOjZdaAdNIwFoCEdAk5upq20AtHV9lChoBkdAcia1SwW30GgHS/ZoCEdAk5xezMRpUXV9lChoBkdAcY+UVSGahGgHTQkBaAhHQJOd6qn3ta91fZQoaAZHQHCGBTOxB3RoB00lAWgIR0CTnycOby6MdX2UKGgGR0BywnKp1ie/aAdNCwFoCEdAk6AHN9ph4XV9lChoBkdAchQ2NvOyFGgHTS8BaAhHQJOgBKXfIjp1fZQoaAZHQG085ZSvTw5oB00CAWgIR0CToeXbuc+adX2UKGgGR0BzSepzcRDkaAdNDwFoCEdAk6ICc0+C9XV9lChoBkdAcD8nUUfxMGgHTRQBaAhHQJOiNNnGsFN1fZQoaAZHQHDFhNmDlHVoB00nAWgIR0CToj6Zpi7TdX2UKGgGR0BxLfgwXZXdaAdNNAFoCEdAk6J8hPj4pXV9lChoBkdAcri+xnnMdWgHTQUBaAhHQJOi8lsxfv51fZQoaAZHQHG1tepn6EdoB00DAWgIR0CToyaZx7zDdX2UKGgGR0Bwl0GTs6aLaAdNBwFoCEdAk6NgM+eOGXV9lChoBkdAboF2Bas6rGgHTTMBaAhHQJOj8+FDfFd1fZQoaAZHQHIIKc7QswtoB00rAWgIR0CTpCirksBidX2UKGgGR0BurHapPykLaAdNFQFoCEdAk6RzkMkQgHV9lChoBkdAVqmq3mV7hWgHTegDaAhHQJOkvhR64Uh1fZQoaAZHQHHp2ll9SdhoB00JAWgIR0CTpXZG8VYZdX2UKGgGR0BxFkWhysCDaAdNHwFoCEdAk6cdQ40dinV9lChoBkdAcN3FFUhmoWgHTSEBaAhHQJOn/qNZNfx1fZQoaAZHQHCbDTWoWHloB01EAWgIR0CTqS3rUsnRdX2UKGgGR0Bw596zE74jaAdNBAFoCEdAk6lJy6tknXV9lChoBkdAcqY/kNnXd2gHTSIBaAhHQJOqFVLi++N1fZQoaAZHQHBAtNzr/sFoB00eAWgIR0CTqi8yeqaPdX2UKGgGR0Bxl8OoYNy6aAdNNgFoCEdAk6qjVlPJrHV9lChoBkdAcwgtMwlByGgHTRABaAhHQJOqwj6eoUB1fZQoaAZHQHFDTE3sHB1oB0v6aAhHQJOrDw/gR9R1fZQoaAZHQG7yxsMy8BdoB00TAWgIR0CTrAhKUVzqdX2UKGgGR0Bvu2g6EJ0GaAdNVgFoCEdAk6wePq9oOHV9lChoBkdAcAxNjLB9C2gHTUIBaAhHQJOseQCCBf91fZQoaAZHQHAZJo0ygwpoB00tAWgIR0CTrQzuWrwOdX2UKGgGR0ByUAytV7x/aAdNCwFoCEdAk61X0TURWnV9lChoBkdAcM6LBsQ/YGgHTZIBaAhHQJOuKZtvXK91fZQoaAZHQHD4X18LKFJoB01hAWgIR0CTrsz+WGATdX2UKGgGR0BvCMmv4dp7aAdNHgFoCEdAk7CgM+eOGXV9lChoBkdAcRIa8Yht+GgHTSEBaAhHQJPF16Ww/xF1fZQoaAZHQG67MmfGuLdoB00CAWgIR0CTxipDNQj2dX2UKGgGR0Bysn9CNS62aAdL62gIR0CTxwvnKW9ldX2UKGgGR0BwOcggX/HYaAdL/GgIR0CTx27pFCswdX2UKGgGR0BwE8spXp4baAdNPQFoCEdAk8gRBzFMqXV9lChoBkdAbq72C/XXiGgHTTQBaAhHQJPIrtXxOL11fZQoaAZHQHD75tzjm0VoB005AWgIR0CTyMDG96C2dX2UKGgGR0ByE7f0mMOxaAdNDQFoCEdAk8lhoM8YAXV9lChoBkdAcfXnvDxb0WgHTRsBaAhHQJPJq/8EV351fZQoaAZHQHBgy6g/TspoB01NAWgIR0CTyh4MWoFWdX2UKGgGR0BwOYsNDtw8aAdNGQFoCEdAk8qjDGcWkHV9lChoBkdAcu7dX1anrWgHTUEBaAhHQJPLGICU5dZ1fZQoaAZHQHJnSzC1qnFoB00pAWgIR0CTy1lYU34sdX2UKGgGR0BwAnf3vhIfaAdNDgFoCEdAk8wRcqvvB3V9lChoBkdAa9Jw1BMSK2gHTScBaAhHQJPMIg7o0Q91fZQoaAZHQHBB+KjzqbBoB00VAWgIR0CTzRbutwJgdX2UKGgGR0BwALp4bCJoaAdNLAFoCEdAk86vE87p3XV9lChoBkdAcOadbgTAWWgHTTMBaAhHQJPPH4N7SiN1fZQoaAZHQG45e2d/axpoB00fAWgIR0CTzzDYRNAUdX2UKGgGR0BtCbv1DjR2aAdNHgFoCEdAk9ArPldTpHV9lChoBkdAcAiFdcB2fWgHTTwBaAhHQJPQbJhfBvd1fZQoaAZHQHI9WqPwNLFoB00dAWgIR0CT0MyGi5/cdX2UKGgGR0ByOiXw9aEBaAdNKwFoCEdAk9Eh2GIsRXV9lChoBkdAcB8QDFId2mgHTQIBaAhHQJPRe2v0ROF1fZQoaAZHQGzBvaURnOBoB00mAWgIR0CT0bAsCkoGdX2UKGgGR0BxlDMJQcghaAdNLgFoCEdAk9ItH2AXmHV9lChoBkdAcbD3EyckMWgHS/RoCEdAk9JLy+YdAHV9lChoBkdAcu0R4yGi6GgHTRUBaAhHQJPSel7+kxh1fZQoaAZHQG+h0GNaQmxoB00sAWgIR0CT03xCpm29dX2UKGgGR0BxP4d/8VHnaAdNCwFoCEdAk9OO10DEFXV9lChoBkdAcmntm+TNdWgHTSEBaAhHQJPUJbSqlxh1fZQoaAZHQG+usXaakRBoB0v+aAhHQJPVqIXTEzh1fZQoaAZHQHAGIffXPJJoB002AWgIR0CT1bM10knkdX2UKGgGR0ByTXK0UoKEaAdL/2gIR0CT1h31jAi3dX2UKGgGR0BxRdvm5lOHaAdNBAFoCEdAk9YxZEDyOXV9lChoBkdAcvWNt65Xl2gHS/xoCEdAk9fz3M6ikHV9lChoBkdAcKGHerMkhWgHTSEBaAhHQJPYFBv73wl1fZQoaAZHQG3ZMzuWrwRoB00UAWgIR0CT2F/DtPYWdX2UKGgGR0Bvxe9rXUYsaAdNMwFoCEdAk9juVHFxXHV9lChoBkdAccYnfVI7NmgHTSMBaAhHQJPZhMrVe8h1fZQoaAZHQHE6SmuTzNFoB00fAWgIR0CT2Z+1Bt1qdX2UKGgGR0BwgS+UQkHEaAdNEgFoCEdAk9nqiGnGbXV9lChoBkdAcpzFLnLaEmgHTSMBaAhHQJPaPTTfBN51fZQoaAZHQG56VZkkKNRoB00LAWgIR0CT2wD0lJHzdX2UKGgGR0Bx8AZGax5caAdNVAFoCEdAk9vktVaOgnV9lChoBkdAcbVKx9oexWgHTTUBaAhHQJPcQdELH+91fZQoaAZHQHAngrc0tRNoB00gAWgIR0CT3FgzxgAqdX2UKGgGR0BxVb3Gn4wiaAdNCwFoCEdAk924lQdjonV9lChoBkdAcqgf+S8rZ2gHTSgBaAhHQJPeBzfaYeF1fZQoaAZHQHBHxMBZIQRoB00fAWgIR0CT3jdcSoOydX2UKGgGR0BsHkLWqcVhaAdNMwFoCEdAk95LtNSIg3V9lChoBkdAcirzshPj42gHS/toCEdAk972Ur08NnV9lChoBkdAbNdtsvZh8mgHTRABaAhHQJPfnZvkzXV1fZQoaAZHQDyTo3aSLZVoB0vhaAhHQJPgCac7Qsx1fZQoaAZHQG/gICU5dW1oB00yAWgIR0CT4NRpDeCTdX2UKGgGR0BvUIuAZsKtaAdNGQFoCEdAk+FgQHzH0nV9lChoBkdAbyOHuZ1FIGgHTSQBaAhHQJPhlPnB+F11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |