Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.17 +/- 0.37
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e0f3ed784ed93fb2df5120773558472b8e6d32cb921208c4091cca7c354961a
|
3 |
+
size 107643
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd451630e50>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fd45162b990>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674414377714626261,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFovaG9tZS9hcm5lL2FuYWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFovaG9tZS9hcm5lL2FuYWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+GO2PpL7Y7y4ePk++GO2PpL7Y7y4ePk++GO2PpL7Y7y4ePk++GO2PpL7Y7y4ePk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA22YXv4YvwD+v5xw/yw6jvLMw2L93YMM/K/dgvyVzsb9vBcg/lnBkP+s1lr9IesI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD4Y7Y+kvtjvLh4+T51tRI7qP0EvKuwR7z4Y7Y+kvtjvLh4+T51tRI7qP0EvKuwR7z4Y7Y+kvtjvLh4+T51tRI7qP0EvKuwR7z4Y7Y+kvtjvLh4+T51tRI7qP0EvKuwR7yUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.35623145 -0.01391496 0.48724914]\n [ 0.35623145 -0.01391496 0.48724914]\n [ 0.35623145 -0.01391496 0.48724914]\n [ 0.35623145 -0.01391496 0.48724914]]",
|
60 |
+
"desired_goal": "[[-0.5914132 1.5014503 0.6129102 ]\n [-0.01990451 -1.6889862 1.5263814 ]\n [-0.8787715 -1.3863264 1.5626658 ]\n [ 0.8923429 -1.1735204 1.5193567 ]]",
|
61 |
+
"observation": "[[ 0.35623145 -0.01391496 0.48724914 0.0022386 -0.00811712 -0.01218812]\n [ 0.35623145 -0.01391496 0.48724914 0.0022386 -0.00811712 -0.01218812]\n [ 0.35623145 -0.01391496 0.48724914 0.0022386 -0.00811712 -0.01218812]\n [ 0.35623145 -0.01391496 0.48724914 0.0022386 -0.00811712 -0.01218812]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnBk6PQKGCz7QdQg9+OTdPZ0wOj1N9rU8NEjkvYnRBz4JfXE+lc2cPM+xEL5yK3c9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.04543458 0.13625339 0.03331548]\n [ 0.10834688 0.04545652 0.02221217]\n [-0.11146584 0.13263525 0.23582853]\n [ 0.019141 -0.14130329 0.06034417]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9dVVgVosBsCUhpRSlIwBbJRLMowBdJRHQJCiLLNfPX11fZQoaAZoCWgPQwj3PH/aqG4LwJSGlFKUaBVLMmgWR0CQoe6PKdQPdX2UKGgGaAloD0MI4nK8AtGTBMCUhpRSlGgVSzJoFkdAkKGxWgezU3V9lChoBmgJaA9DCA7Y1eQpawPAlIaUUpRoFUsyaBZHQJChdf2K2rp1fZQoaAZoCWgPQwgw8x38xOEQwJSGlFKUaBVLMmgWR0CQowCcPOIJdX2UKGgGaAloD0MIByRh304CCcCUhpRSlGgVSzJoFkdAkKLC4e9zwXV9lChoBmgJaA9DCMEffv57cAfAlIaUUpRoFUsyaBZHQJCihaY/mkp1fZQoaAZoCWgPQwj+mNamsf0FwJSGlFKUaBVLMmgWR0CQokpBHCoCdX2UKGgGaAloD0MIcAnAP6XqBcCUhpRSlGgVSzJoFkdAkKPayfL9uXV9lChoBmgJaA9DCAK7mjxlNQbAlIaUUpRoFUsyaBZHQJCjnOJLuhN1fZQoaAZoCWgPQwhli6Td6IMTwJSGlFKUaBVLMmgWR0CQo1+sHSncdX2UKGgGaAloD0MIkbdc/dgEDMCUhpRSlGgVSzJoFkdAkKMkHMUypXV9lChoBmgJaA9DCD90QX3LfALAlIaUUpRoFUsyaBZHQJCkqnfl6qt1fZQoaAZoCWgPQwgvi4nNx7UGwJSGlFKUaBVLMmgWR0CQpGxbB42TdX2UKGgGaAloD0MIbF7VWS1wCMCUhpRSlGgVSzJoFkdAkKQvKISDiHV9lChoBmgJaA9DCOpb5nRZrATAlIaUUpRoFUsyaBZHQJCj85hjOLR1fZQoaAZoCWgPQwg49BYP73kRwJSGlFKUaBVLMmgWR0CQpXmUW2w3dX2UKGgGaAloD0MIoZ4+An9YBcCUhpRSlGgVSzJoFkdAkKU7oW56MXV9lChoBmgJaA9DCMBAECBD5wbAlIaUUpRoFUsyaBZHQJCk/lYEGJN1fZQoaAZoCWgPQwifqkIDsWwGwJSGlFKUaBVLMmgWR0CQpMK4hEBsdX2UKGgGaAloD0MIn82qz9XWAcCUhpRSlGgVSzJoFkdAkKZbRa5f+nV9lChoBmgJaA9DCM9Nm3EaQgXAlIaUUpRoFUsyaBZHQJCmHTUiILx1fZQoaAZoCWgPQwjYvKqzWgAIwJSGlFKUaBVLMmgWR0CQpeCb+cYqdX2UKGgGaAloD0MIG2MnvATHAcCUhpRSlGgVSzJoFkdAkKWlM7EHdHV9lChoBmgJaA9DCLwIU5RL4wbAlIaUUpRoFUsyaBZHQJCnMXTEzft1fZQoaAZoCWgPQwhQqKePwF8EwJSGlFKUaBVLMmgWR0CQpvNrCWNWdX2UKGgGaAloD0MIH9jxXyCoBMCUhpRSlGgVSzJoFkdAkKa2c4HX3HV9lChoBmgJaA9DCHk8LT9wlQbAlIaUUpRoFUsyaBZHQJCmexLTQVt1fZQoaAZoCWgPQwhdwTbiyc4GwJSGlFKUaBVLMmgWR0CQqAhdMTN/dX2UKGgGaAloD0MI7ib4punTBcCUhpRSlGgVSzJoFkdAkKfKS1Vo6HV9lChoBmgJaA9DCIVgVb38rgXAlIaUUpRoFUsyaBZHQJCnjVtoBaN1fZQoaAZoCWgPQwgJVP8gkmEEwJSGlFKUaBVLMmgWR0CQp1HDaXa8dX2UKGgGaAloD0MIKQRyiSOPCcCUhpRSlGgVSzJoFkdAkKjSSeRPoHV9lChoBmgJaA9DCMcOKnEdowPAlIaUUpRoFUsyaBZHQJColG6PKdR1fZQoaAZoCWgPQwhSJ6CJsMEJwJSGlFKUaBVLMmgWR0CQqFdXko4NdX2UKGgGaAloD0MIBcQkXMijBcCUhpRSlGgVSzJoFkdAkKgb3wkPc3V9lChoBmgJaA9DCORME7afDAzAlIaUUpRoFUsyaBZHQJCpnpxFRYR1fZQoaAZoCWgPQwi371F/vQIFwJSGlFKUaBVLMmgWR0CQqWC0ngHedX2UKGgGaAloD0MIpwcFpWglDcCUhpRSlGgVSzJoFkdAkKkjkELYw3V9lChoBmgJaA9DCEN1c/G3fQfAlIaUUpRoFUsyaBZHQJCo5/z8P4F1fZQoaAZoCWgPQwjlettMhdgEwJSGlFKUaBVLMmgWR0CQqnTfixVydX2UKGgGaAloD0MIkZp2Mc10CMCUhpRSlGgVSzJoFkdAkKo2tuDSPXV9lChoBmgJaA9DCLsnDwu1BgHAlIaUUpRoFUsyaBZHQJCp+YD1XeZ1fZQoaAZoCWgPQwgOn3QiwbQDwJSGlFKUaBVLMmgWR0CQqb4e9zwMdX2UKGgGaAloD0MIaObJNQWyBMCUhpRSlGgVSzJoFkdAkKtE9yLhrHV9lChoBmgJaA9DCI3V5v9V5wXAlIaUUpRoFUsyaBZHQJCrBx95Qgt1fZQoaAZoCWgPQwiJeVbSiq8EwJSGlFKUaBVLMmgWR0CQqsoi9qUNdX2UKGgGaAloD0MI4h+29GjKBsCUhpRSlGgVSzJoFkdAkKqOtOmBOHV9lChoBmgJaA9DCJGYoIZvAQLAlIaUUpRoFUsyaBZHQJCsEqYqoZR1fZQoaAZoCWgPQwgROugSDv0DwJSGlFKUaBVLMmgWR0CQq9SB9TgmdX2UKGgGaAloD0MIixu3mJ/bCMCUhpRSlGgVSzJoFkdAkKuXdKujh3V9lChoBmgJaA9DCL2siQW+QgTAlIaUUpRoFUsyaBZHQJCrXB68g6l1fZQoaAZoCWgPQwiNtb+zPToCwJSGlFKUaBVLMmgWR0CQrNz1K5CodX2UKGgGaAloD0MITfVk/tEXCcCUhpRSlGgVSzJoFkdAkKye2uxKQXV9lChoBmgJaA9DCDfjNEQVHgnAlIaUUpRoFUsyaBZHQJCsYbPyCnR1fZQoaAZoCWgPQwgiADj27LkOwJSGlFKUaBVLMmgWR0CQrCZkCmuUdX2UKGgGaAloD0MI4uZUMgCUCsCUhpRSlGgVSzJoFkdAkK2wlKK51HV9lChoBmgJaA9DCEaXN4dr9QnAlIaUUpRoFUsyaBZHQJCtcnAqNId1fZQoaAZoCWgPQwgKLlbUYHoEwJSGlFKUaBVLMmgWR0CQrTU0elsQdX2UKGgGaAloD0MI3uf4aHEmA8CUhpRSlGgVSzJoFkdAkKz57w8W9HV9lChoBmgJaA9DCMnKL4MxYgbAlIaUUpRoFUsyaBZHQJCuf5j6N2l1fZQoaAZoCWgPQwi+3ZIcsOsAwJSGlFKUaBVLMmgWR0CQrkGsmv4edX2UKGgGaAloD0MIzt4ZbVVyBsCUhpRSlGgVSzJoFkdAkK4EauOjqXV9lChoBmgJaA9DCLu1TIbj+QTAlIaUUpRoFUsyaBZHQJCtyQdS2ph1fZQoaAZoCWgPQwjqXif1ZekEwJSGlFKUaBVLMmgWR0CQr0+uNgjRdX2UKGgGaAloD0MILjnulA7WAMCUhpRSlGgVSzJoFkdAkK8R2fTTfHV9lChoBmgJaA9DCH3mrE85JgTAlIaUUpRoFUsyaBZHQJCu1MajveB1fZQoaAZoCWgPQwgANiBCXDn/v5SGlFKUaBVLMmgWR0CQrpk8RtgsdX2UKGgGaAloD0MI5pDUQslEB8CUhpRSlGgVSzJoFkdAkLAchPj4pXV9lChoBmgJaA9DCNFdEmdF9AXAlIaUUpRoFUsyaBZHQJCv3mmtQsR1fZQoaAZoCWgPQwjvjLYqicwEwJSGlFKUaBVLMmgWR0CQr6EsJ6Y3dX2UKGgGaAloD0MI2liJeVayA8CUhpRSlGgVSzJoFkdAkK9loHs1K3V9lChoBmgJaA9DCI//AkGAzAfAlIaUUpRoFUsyaBZHQJCw7JOnEVF1fZQoaAZoCWgPQwhV+DO8WUMCwJSGlFKUaBVLMmgWR0CQsK6jWTX8dX2UKGgGaAloD0MIcHuCxHa3CcCUhpRSlGgVSzJoFkdAkLBxrvb48HV9lChoBmgJaA9DCOpdvB+3/wbAlIaUUpRoFUsyaBZHQJCwNlTWGyp1fZQoaAZoCWgPQwijrrX3qeoIwJSGlFKUaBVLMmgWR0CQscDD0lJIdX2UKGgGaAloD0MI6brwg/NJA8CUhpRSlGgVSzJoFkdAkLGCpWFN+XV9lChoBmgJaA9DCDvgumJGWAHAlIaUUpRoFUsyaBZHQJCxRZha1Tl1fZQoaAZoCWgPQwjzABb59UMDwJSGlFKUaBVLMmgWR0CQsQpFkQPJdX2UKGgGaAloD0MIjln2JLBZAsCUhpRSlGgVSzJoFkdAkLKUoa1kUnV9lChoBmgJaA9DCMO8x5km7ADAlIaUUpRoFUsyaBZHQJCyVq+Jxed1fZQoaAZoCWgPQwiLqIk+H0UEwJSGlFKUaBVLMmgWR0CQshlyR0U5dX2UKGgGaAloD0MIowVoW836AcCUhpRSlGgVSzJoFkdAkLHdzXBgu3V9lChoBmgJaA9DCGfvjLYqKQXAlIaUUpRoFUsyaBZHQJCzZyWAwwl1fZQoaAZoCWgPQwjAJJUp5iABwJSGlFKUaBVLMmgWR0CQsykYoAn2dX2UKGgGaAloD0MIEDy+vWtQBMCUhpRSlGgVSzJoFkdAkLLsJIDoyXV9lChoBmgJaA9DCGO2ZFWEOwTAlIaUUpRoFUsyaBZHQJCysJiRW911fZQoaAZoCWgPQwjIeJRKeML8v5SGlFKUaBVLMmgWR0CQtEu14Pf9dX2UKGgGaAloD0MIFQFO7+J9/7+UhpRSlGgVSzJoFkdAkLQNt65Xl3V9lChoBmgJaA9DCDoi36XUJQHAlIaUUpRoFUsyaBZHQJCz0Mw1zhh1fZQoaAZoCWgPQwiNXaJ6ayAEwJSGlFKUaBVLMmgWR0CQs5VWCEpRdX2UKGgGaAloD0MIwHrct1rnBsCUhpRSlGgVSzJoFkdAkLUjHGS6lXV9lChoBmgJaA9DCHcQO1Po3APAlIaUUpRoFUsyaBZHQJC05PoFFDx1fZQoaAZoCWgPQwi4sdmR6nv+v5SGlFKUaBVLMmgWR0CQtKe9SMtLdX2UKGgGaAloD0MIord4eM9hBcCUhpRSlGgVSzJoFkdAkLRsMmWt2nV9lChoBmgJaA9DCKIIqdvZVwPAlIaUUpRoFUsyaBZHQJC1+yC4Bmx1fZQoaAZoCWgPQwhlNsgkIycAwJSGlFKUaBVLMmgWR0CQtbz9jwx4dX2UKGgGaAloD0MIA+/k02Ob/r+UhpRSlGgVSzJoFkdAkLV/2TPjXHV9lChoBmgJaA9DCDDYDdsWpQDAlIaUUpRoFUsyaBZHQJC1RIK+i8F1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6653fc8926005e00518aa92b44351a558b04fca1bb11370188c89a1018dcf88a
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3e2fca74bfe4b28b2f2c845471c73e7e25951fb307d8eb2bb2a615131e3827a
|
3 |
+
size 45502
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.15.0-58-generic-x86_64-with-glibc2.10 #64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023
|
2 |
+
Python: 3.8.5
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.1
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.23.4
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd451630e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd45162b990>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674414377714626261, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFovaG9tZS9hcm5lL2FuYWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFovaG9tZS9hcm5lL2FuYWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+GO2PpL7Y7y4ePk++GO2PpL7Y7y4ePk++GO2PpL7Y7y4ePk++GO2PpL7Y7y4ePk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA22YXv4YvwD+v5xw/yw6jvLMw2L93YMM/K/dgvyVzsb9vBcg/lnBkP+s1lr9IesI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD4Y7Y+kvtjvLh4+T51tRI7qP0EvKuwR7z4Y7Y+kvtjvLh4+T51tRI7qP0EvKuwR7z4Y7Y+kvtjvLh4+T51tRI7qP0EvKuwR7z4Y7Y+kvtjvLh4+T51tRI7qP0EvKuwR7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.35623145 -0.01391496 0.48724914]\n [ 0.35623145 -0.01391496 0.48724914]\n [ 0.35623145 -0.01391496 0.48724914]\n [ 0.35623145 -0.01391496 0.48724914]]", "desired_goal": "[[-0.5914132 1.5014503 0.6129102 ]\n [-0.01990451 -1.6889862 1.5263814 ]\n [-0.8787715 -1.3863264 1.5626658 ]\n [ 0.8923429 -1.1735204 1.5193567 ]]", "observation": "[[ 0.35623145 -0.01391496 0.48724914 0.0022386 -0.00811712 -0.01218812]\n [ 0.35623145 -0.01391496 0.48724914 0.0022386 -0.00811712 -0.01218812]\n [ 0.35623145 -0.01391496 0.48724914 0.0022386 -0.00811712 -0.01218812]\n [ 0.35623145 -0.01391496 0.48724914 0.0022386 -0.00811712 -0.01218812]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnBk6PQKGCz7QdQg9+OTdPZ0wOj1N9rU8NEjkvYnRBz4JfXE+lc2cPM+xEL5yK3c9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04543458 0.13625339 0.03331548]\n [ 0.10834688 0.04545652 0.02221217]\n [-0.11146584 0.13263525 0.23582853]\n [ 0.019141 -0.14130329 0.06034417]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9dVVgVosBsCUhpRSlIwBbJRLMowBdJRHQJCiLLNfPX11fZQoaAZoCWgPQwj3PH/aqG4LwJSGlFKUaBVLMmgWR0CQoe6PKdQPdX2UKGgGaAloD0MI4nK8AtGTBMCUhpRSlGgVSzJoFkdAkKGxWgezU3V9lChoBmgJaA9DCA7Y1eQpawPAlIaUUpRoFUsyaBZHQJChdf2K2rp1fZQoaAZoCWgPQwgw8x38xOEQwJSGlFKUaBVLMmgWR0CQowCcPOIJdX2UKGgGaAloD0MIByRh304CCcCUhpRSlGgVSzJoFkdAkKLC4e9zwXV9lChoBmgJaA9DCMEffv57cAfAlIaUUpRoFUsyaBZHQJCihaY/mkp1fZQoaAZoCWgPQwj+mNamsf0FwJSGlFKUaBVLMmgWR0CQokpBHCoCdX2UKGgGaAloD0MIcAnAP6XqBcCUhpRSlGgVSzJoFkdAkKPayfL9uXV9lChoBmgJaA9DCAK7mjxlNQbAlIaUUpRoFUsyaBZHQJCjnOJLuhN1fZQoaAZoCWgPQwhli6Td6IMTwJSGlFKUaBVLMmgWR0CQo1+sHSncdX2UKGgGaAloD0MIkbdc/dgEDMCUhpRSlGgVSzJoFkdAkKMkHMUypXV9lChoBmgJaA9DCD90QX3LfALAlIaUUpRoFUsyaBZHQJCkqnfl6qt1fZQoaAZoCWgPQwgvi4nNx7UGwJSGlFKUaBVLMmgWR0CQpGxbB42TdX2UKGgGaAloD0MIbF7VWS1wCMCUhpRSlGgVSzJoFkdAkKQvKISDiHV9lChoBmgJaA9DCOpb5nRZrATAlIaUUpRoFUsyaBZHQJCj85hjOLR1fZQoaAZoCWgPQwg49BYP73kRwJSGlFKUaBVLMmgWR0CQpXmUW2w3dX2UKGgGaAloD0MIoZ4+An9YBcCUhpRSlGgVSzJoFkdAkKU7oW56MXV9lChoBmgJaA9DCMBAECBD5wbAlIaUUpRoFUsyaBZHQJCk/lYEGJN1fZQoaAZoCWgPQwifqkIDsWwGwJSGlFKUaBVLMmgWR0CQpMK4hEBsdX2UKGgGaAloD0MIn82qz9XWAcCUhpRSlGgVSzJoFkdAkKZbRa5f+nV9lChoBmgJaA9DCM9Nm3EaQgXAlIaUUpRoFUsyaBZHQJCmHTUiILx1fZQoaAZoCWgPQwjYvKqzWgAIwJSGlFKUaBVLMmgWR0CQpeCb+cYqdX2UKGgGaAloD0MIG2MnvATHAcCUhpRSlGgVSzJoFkdAkKWlM7EHdHV9lChoBmgJaA9DCLwIU5RL4wbAlIaUUpRoFUsyaBZHQJCnMXTEzft1fZQoaAZoCWgPQwhQqKePwF8EwJSGlFKUaBVLMmgWR0CQpvNrCWNWdX2UKGgGaAloD0MIH9jxXyCoBMCUhpRSlGgVSzJoFkdAkKa2c4HX3HV9lChoBmgJaA9DCHk8LT9wlQbAlIaUUpRoFUsyaBZHQJCmexLTQVt1fZQoaAZoCWgPQwhdwTbiyc4GwJSGlFKUaBVLMmgWR0CQqAhdMTN/dX2UKGgGaAloD0MI7ib4punTBcCUhpRSlGgVSzJoFkdAkKfKS1Vo6HV9lChoBmgJaA9DCIVgVb38rgXAlIaUUpRoFUsyaBZHQJCnjVtoBaN1fZQoaAZoCWgPQwgJVP8gkmEEwJSGlFKUaBVLMmgWR0CQp1HDaXa8dX2UKGgGaAloD0MIKQRyiSOPCcCUhpRSlGgVSzJoFkdAkKjSSeRPoHV9lChoBmgJaA9DCMcOKnEdowPAlIaUUpRoFUsyaBZHQJColG6PKdR1fZQoaAZoCWgPQwhSJ6CJsMEJwJSGlFKUaBVLMmgWR0CQqFdXko4NdX2UKGgGaAloD0MIBcQkXMijBcCUhpRSlGgVSzJoFkdAkKgb3wkPc3V9lChoBmgJaA9DCORME7afDAzAlIaUUpRoFUsyaBZHQJCpnpxFRYR1fZQoaAZoCWgPQwi371F/vQIFwJSGlFKUaBVLMmgWR0CQqWC0ngHedX2UKGgGaAloD0MIpwcFpWglDcCUhpRSlGgVSzJoFkdAkKkjkELYw3V9lChoBmgJaA9DCEN1c/G3fQfAlIaUUpRoFUsyaBZHQJCo5/z8P4F1fZQoaAZoCWgPQwjlettMhdgEwJSGlFKUaBVLMmgWR0CQqnTfixVydX2UKGgGaAloD0MIkZp2Mc10CMCUhpRSlGgVSzJoFkdAkKo2tuDSPXV9lChoBmgJaA9DCLsnDwu1BgHAlIaUUpRoFUsyaBZHQJCp+YD1XeZ1fZQoaAZoCWgPQwgOn3QiwbQDwJSGlFKUaBVLMmgWR0CQqb4e9zwMdX2UKGgGaAloD0MIaObJNQWyBMCUhpRSlGgVSzJoFkdAkKtE9yLhrHV9lChoBmgJaA9DCI3V5v9V5wXAlIaUUpRoFUsyaBZHQJCrBx95Qgt1fZQoaAZoCWgPQwiJeVbSiq8EwJSGlFKUaBVLMmgWR0CQqsoi9qUNdX2UKGgGaAloD0MI4h+29GjKBsCUhpRSlGgVSzJoFkdAkKqOtOmBOHV9lChoBmgJaA9DCJGYoIZvAQLAlIaUUpRoFUsyaBZHQJCsEqYqoZR1fZQoaAZoCWgPQwgROugSDv0DwJSGlFKUaBVLMmgWR0CQq9SB9TgmdX2UKGgGaAloD0MIixu3mJ/bCMCUhpRSlGgVSzJoFkdAkKuXdKujh3V9lChoBmgJaA9DCL2siQW+QgTAlIaUUpRoFUsyaBZHQJCrXB68g6l1fZQoaAZoCWgPQwiNtb+zPToCwJSGlFKUaBVLMmgWR0CQrNz1K5CodX2UKGgGaAloD0MITfVk/tEXCcCUhpRSlGgVSzJoFkdAkKye2uxKQXV9lChoBmgJaA9DCDfjNEQVHgnAlIaUUpRoFUsyaBZHQJCsYbPyCnR1fZQoaAZoCWgPQwgiADj27LkOwJSGlFKUaBVLMmgWR0CQrCZkCmuUdX2UKGgGaAloD0MI4uZUMgCUCsCUhpRSlGgVSzJoFkdAkK2wlKK51HV9lChoBmgJaA9DCEaXN4dr9QnAlIaUUpRoFUsyaBZHQJCtcnAqNId1fZQoaAZoCWgPQwgKLlbUYHoEwJSGlFKUaBVLMmgWR0CQrTU0elsQdX2UKGgGaAloD0MI3uf4aHEmA8CUhpRSlGgVSzJoFkdAkKz57w8W9HV9lChoBmgJaA9DCMnKL4MxYgbAlIaUUpRoFUsyaBZHQJCuf5j6N2l1fZQoaAZoCWgPQwi+3ZIcsOsAwJSGlFKUaBVLMmgWR0CQrkGsmv4edX2UKGgGaAloD0MIzt4ZbVVyBsCUhpRSlGgVSzJoFkdAkK4EauOjqXV9lChoBmgJaA9DCLu1TIbj+QTAlIaUUpRoFUsyaBZHQJCtyQdS2ph1fZQoaAZoCWgPQwjqXif1ZekEwJSGlFKUaBVLMmgWR0CQr0+uNgjRdX2UKGgGaAloD0MILjnulA7WAMCUhpRSlGgVSzJoFkdAkK8R2fTTfHV9lChoBmgJaA9DCH3mrE85JgTAlIaUUpRoFUsyaBZHQJCu1MajveB1fZQoaAZoCWgPQwgANiBCXDn/v5SGlFKUaBVLMmgWR0CQrpk8RtgsdX2UKGgGaAloD0MI5pDUQslEB8CUhpRSlGgVSzJoFkdAkLAchPj4pXV9lChoBmgJaA9DCNFdEmdF9AXAlIaUUpRoFUsyaBZHQJCv3mmtQsR1fZQoaAZoCWgPQwjvjLYqicwEwJSGlFKUaBVLMmgWR0CQr6EsJ6Y3dX2UKGgGaAloD0MI2liJeVayA8CUhpRSlGgVSzJoFkdAkK9loHs1K3V9lChoBmgJaA9DCI//AkGAzAfAlIaUUpRoFUsyaBZHQJCw7JOnEVF1fZQoaAZoCWgPQwhV+DO8WUMCwJSGlFKUaBVLMmgWR0CQsK6jWTX8dX2UKGgGaAloD0MIcHuCxHa3CcCUhpRSlGgVSzJoFkdAkLBxrvb48HV9lChoBmgJaA9DCOpdvB+3/wbAlIaUUpRoFUsyaBZHQJCwNlTWGyp1fZQoaAZoCWgPQwijrrX3qeoIwJSGlFKUaBVLMmgWR0CQscDD0lJIdX2UKGgGaAloD0MI6brwg/NJA8CUhpRSlGgVSzJoFkdAkLGCpWFN+XV9lChoBmgJaA9DCDvgumJGWAHAlIaUUpRoFUsyaBZHQJCxRZha1Tl1fZQoaAZoCWgPQwjzABb59UMDwJSGlFKUaBVLMmgWR0CQsQpFkQPJdX2UKGgGaAloD0MIjln2JLBZAsCUhpRSlGgVSzJoFkdAkLKUoa1kUnV9lChoBmgJaA9DCMO8x5km7ADAlIaUUpRoFUsyaBZHQJCyVq+Jxed1fZQoaAZoCWgPQwiLqIk+H0UEwJSGlFKUaBVLMmgWR0CQshlyR0U5dX2UKGgGaAloD0MIowVoW836AcCUhpRSlGgVSzJoFkdAkLHdzXBgu3V9lChoBmgJaA9DCGfvjLYqKQXAlIaUUpRoFUsyaBZHQJCzZyWAwwl1fZQoaAZoCWgPQwjAJJUp5iABwJSGlFKUaBVLMmgWR0CQsykYoAn2dX2UKGgGaAloD0MIEDy+vWtQBMCUhpRSlGgVSzJoFkdAkLLsJIDoyXV9lChoBmgJaA9DCGO2ZFWEOwTAlIaUUpRoFUsyaBZHQJCysJiRW911fZQoaAZoCWgPQwjIeJRKeML8v5SGlFKUaBVLMmgWR0CQtEu14Pf9dX2UKGgGaAloD0MIFQFO7+J9/7+UhpRSlGgVSzJoFkdAkLQNt65Xl3V9lChoBmgJaA9DCDoi36XUJQHAlIaUUpRoFUsyaBZHQJCz0Mw1zhh1fZQoaAZoCWgPQwiNXaJ6ayAEwJSGlFKUaBVLMmgWR0CQs5VWCEpRdX2UKGgGaAloD0MIwHrct1rnBsCUhpRSlGgVSzJoFkdAkLUjHGS6lXV9lChoBmgJaA9DCHcQO1Po3APAlIaUUpRoFUsyaBZHQJC05PoFFDx1fZQoaAZoCWgPQwi4sdmR6nv+v5SGlFKUaBVLMmgWR0CQtKe9SMtLdX2UKGgGaAloD0MIord4eM9hBcCUhpRSlGgVSzJoFkdAkLRsMmWt2nV9lChoBmgJaA9DCKIIqdvZVwPAlIaUUpRoFUsyaBZHQJC1+yC4Bmx1fZQoaAZoCWgPQwhlNsgkIycAwJSGlFKUaBVLMmgWR0CQtbz9jwx4dX2UKGgGaAloD0MIA+/k02Ob/r+UhpRSlGgVSzJoFkdAkLV/2TPjXHV9lChoBmgJaA9DCDDYDdsWpQDAlIaUUpRoFUsyaBZHQJC1RIK+i8F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.10 #64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023", "Python": "3.8.5", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (808 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.1746698461007328, "std_reward": 0.3732200713353288, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T20:24:13.964009"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c19e3fb965cd120c8aabc9bdd067d3e0fa4890a9b03c4837dccfd3775ff840d
|
3 |
+
size 3056
|