ArmelR commited on
Commit
9c1178b
1 Parent(s): 07cb281

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -3
README.md CHANGED
@@ -21,7 +21,7 @@ with permissive licenses, namely MIT and Apache 2.0. This set of code was furthe
21
  For our fine-tuning, we decided to follow a 2-step strategy.
22
  - Pretraining (Fine-tuning) with next token prediction on the previously built gradio dataset (this step should familiarize the model with the gradio syntax.).
23
  - Instruction fine-tuning on an instruction dataset (this step should make the model conversational.).
24
- For both steps, we made use of parameter-efficient fine-tuning via the library [PEFT](https://github.com/huggingface/peft), more precisely [LoRa](https://arxiv.org/abs/2106.09685). Our
25
  training script is the famous [starcoder fine-tuning script](https://github.com/bigcode-project/starcoder).
26
 
27
  ## Resources
@@ -59,8 +59,10 @@ model = AutoModelForCausalLM.from_pretrained(checkpoint_name)
59
  tokenizer = AutoTokenizer.from_pretrained(checkpoint_name)
60
  prompt = "Create a gradio application that help to convert temperature in celcius into temperature in Fahrenheit"
61
  inputs = tokenizer(f"Question: {prompt}\n\nAnswer: ", return_tensors="pt")
62
- outputs = model.generate(inputs["input_ids"], temperature=0.2, top_p=0.95)
63
- print(tokenizer.decode(outputs))
 
64
  ```
 
65
  # More information
66
  For further information, refer to [StarCoder](https://huggingface.co/bigcode/starcoder).
 
21
  For our fine-tuning, we decided to follow a 2-step strategy.
22
  - Pretraining (Fine-tuning) with next token prediction on the previously built gradio dataset (this step should familiarize the model with the gradio syntax.).
23
  - Instruction fine-tuning on an instruction dataset (this step should make the model conversational.).
24
+ For both steps, we made use of parameter-efficient fine-tuning via the library [PEFT](https://github.com/huggingface/peft), more precisely [LoRA](https://arxiv.org/abs/2106.09685). Our
25
  training script is the famous [starcoder fine-tuning script](https://github.com/bigcode-project/starcoder).
26
 
27
  ## Resources
 
59
  tokenizer = AutoTokenizer.from_pretrained(checkpoint_name)
60
  prompt = "Create a gradio application that help to convert temperature in celcius into temperature in Fahrenheit"
61
  inputs = tokenizer(f"Question: {prompt}\n\nAnswer: ", return_tensors="pt")
62
+ outputs = model.generate(inputs["input_ids"], temperature=0.2, top_p=0.95, max_length=200)
63
+ input_len=len(inputs["input_ids"])
64
+ print(tokenizer.decode(outputs[0][input_len:]))
65
  ```
66
+
67
  # More information
68
  For further information, refer to [StarCoder](https://huggingface.co/bigcode/starcoder).