File size: 1,343 Bytes
7365e50
 
f5b436f
7365e50
 
 
 
f7a582c
 
f5b436f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7365e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: keras
license: mit
---

## Model description

A very simple model that converts an image into a number!

### the hepler function
(requirements: `numpy Pillow`)
```python
import numpy as np
from PIL import Image

def predict(model, img):
    pil_image = img
    pil_image = pil_image.resize((64, 64))

    image_array = np.array(pil_image) / 255.0

    image_array = np.expand_dims(image_array, axis=0)

    input_shape = (64, 64, pil_image.mode == 'RGB' and 3 or 1)

    decimal_prediction = model.predict(image_array)[0][0]
    return decimal_prediction
```

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:

| Hyperparameters | Value |
| :-- | :-- |
| name | Adam |
| weight_decay | None |
| clipnorm | None |
| global_clipnorm | None |
| clipvalue | None |
| use_ema | False |
| ema_momentum | 0.99 |
| ema_overwrite_frequency | None |
| jit_compile | False |
| is_legacy_optimizer | False |
| learning_rate | 0.0010000000474974513 |
| beta_1 | 0.9 |
| beta_2 | 0.999 |
| epsilon | 1e-07 |
| amsgrad | False |
| training_precision | float32 |


 ## Model Plot

<details>
<summary>View Model Plot</summary>

![Model Image](./model.png)

</details>