File size: 1,343 Bytes
7365e50 f5b436f 7365e50 f7a582c f5b436f 7365e50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: keras
license: mit
---
## Model description
A very simple model that converts an image into a number!
### the hepler function
(requirements: `numpy Pillow`)
```python
import numpy as np
from PIL import Image
def predict(model, img):
pil_image = img
pil_image = pil_image.resize((64, 64))
image_array = np.array(pil_image) / 255.0
image_array = np.expand_dims(image_array, axis=0)
input_shape = (64, 64, pil_image.mode == 'RGB' and 3 or 1)
decimal_prediction = model.predict(image_array)[0][0]
return decimal_prediction
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
| Hyperparameters | Value |
| :-- | :-- |
| name | Adam |
| weight_decay | None |
| clipnorm | None |
| global_clipnorm | None |
| clipvalue | None |
| use_ema | False |
| ema_momentum | 0.99 |
| ema_overwrite_frequency | None |
| jit_compile | False |
| is_legacy_optimizer | False |
| learning_rate | 0.0010000000474974513 |
| beta_1 | 0.9 |
| beta_2 | 0.999 |
| epsilon | 1e-07 |
| amsgrad | False |
| training_precision | float32 |
## Model Plot
<details>
<summary>View Model Plot</summary>

</details> |