Update README.md
Browse files
README.md
CHANGED
@@ -27,4 +27,155 @@ Aria-UI sets new state-of-the-art results on offline and online agent benchmarks
|
|
27 |
🏆 **1st place** on **AndroidWorld** with **44.8%** task success rate and
|
28 |
🥉 **3rd place** on **OSWorld** with **15.2%** task success rate (Dec. 2024).
|
29 |
|
30 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
🏆 **1st place** on **AndroidWorld** with **44.8%** task success rate and
|
28 |
🥉 **3rd place** on **OSWorld** with **15.2%** task success rate (Dec. 2024).
|
29 |
|
30 |
+

|
31 |
+
|
32 |
+
## Quick Start
|
33 |
+
### Installation
|
34 |
+
```
|
35 |
+
pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow
|
36 |
+
pip install flash-attn --no-build-isolation
|
37 |
+
# For better inference performance, you can install grouped-gemm, which may take 3-5 minutes to install
|
38 |
+
pip install grouped_gemm==0.1.6
|
39 |
+
```
|
40 |
+
|
41 |
+
### Inference with vllm (strongly recommended)
|
42 |
+
First, make sure you install the latest version of vLLM so that it supports Aria-UI
|
43 |
+
```
|
44 |
+
pip install https://vllm-wheels.s3.us-west-2.amazonaws.com/nightly/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl
|
45 |
+
```
|
46 |
+
|
47 |
+
Here is a code snippet for Aria-UI with vllm.
|
48 |
+
```python
|
49 |
+
from PIL import Image, ImageDraw
|
50 |
+
from transformers import AutoTokenizer
|
51 |
+
from vllm import LLM, SamplingParams
|
52 |
+
import ast
|
53 |
+
|
54 |
+
model_path = "Aria-UI/Aria-UI-base"
|
55 |
+
|
56 |
+
def main():
|
57 |
+
llm = LLM(
|
58 |
+
model=model_path,
|
59 |
+
tokenizer_mode="slow",
|
60 |
+
dtype="bfloat16",
|
61 |
+
trust_remote_code=True,
|
62 |
+
)
|
63 |
+
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
65 |
+
model_path, trust_remote_code=True, use_fast=False
|
66 |
+
)
|
67 |
+
|
68 |
+
instruction = "Try Aria."
|
69 |
+
|
70 |
+
messages = [
|
71 |
+
{
|
72 |
+
"role": "user",
|
73 |
+
"content": [
|
74 |
+
{"type": "image"},
|
75 |
+
{
|
76 |
+
"type": "text",
|
77 |
+
"text": "Given a GUI image, what are the relative (0-1000) pixel point coordinates for the element corresponding to the following instruction or description: " + instruction,
|
78 |
+
}
|
79 |
+
],
|
80 |
+
}
|
81 |
+
]
|
82 |
+
|
83 |
+
message = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
84 |
+
|
85 |
+
outputs = llm.generate(
|
86 |
+
{
|
87 |
+
"prompt_token_ids": message,
|
88 |
+
"multi_modal_data": {
|
89 |
+
"image": [
|
90 |
+
Image.open("examples/aria.png"),
|
91 |
+
],
|
92 |
+
"max_image_size": 980, # [Optional] The max image patch size, default `980`
|
93 |
+
"split_image": True, # [Optional] whether to split the images, default `True`
|
94 |
+
},
|
95 |
+
},
|
96 |
+
sampling_params=SamplingParams(max_tokens=50, top_k=1, stop=["<|im_end|>"]),
|
97 |
+
)
|
98 |
+
|
99 |
+
for o in outputs:
|
100 |
+
generated_tokens = o.outputs[0].token_ids
|
101 |
+
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
102 |
+
print(response)
|
103 |
+
coords = ast.literal_eval(response.replace("<|im_end|>", "").replace("```", "").replace(" ", "").strip())
|
104 |
+
return coords
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
main()
|
108 |
+
|
109 |
+
```
|
110 |
+
|
111 |
+
### Inference with Transfomrers (not recommended)
|
112 |
+
You can also use the original `transformers` API for Aria-UI. For instance:
|
113 |
+
```python
|
114 |
+
import argparse
|
115 |
+
import torch
|
116 |
+
import os
|
117 |
+
import json
|
118 |
+
from tqdm import tqdm
|
119 |
+
import time
|
120 |
+
from PIL import Image, ImageDraw
|
121 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
122 |
+
import ast
|
123 |
+
|
124 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
125 |
+
|
126 |
+
model_path = "Aria-UI/Aria-UI-base"
|
127 |
+
|
128 |
+
model = AutoModelForCausalLM.from_pretrained(
|
129 |
+
model_path,
|
130 |
+
device_map="auto",
|
131 |
+
torch_dtype=torch.bfloat16,
|
132 |
+
trust_remote_code=True,
|
133 |
+
)
|
134 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
135 |
+
|
136 |
+
image_file = "./examples/aria.png"
|
137 |
+
instruction = "Try Aria."
|
138 |
+
image = Image.open(image_file).convert("RGB")
|
139 |
+
|
140 |
+
messages = [
|
141 |
+
{
|
142 |
+
"role": "user",
|
143 |
+
"content": [
|
144 |
+
{"text": None, "type": "image"},
|
145 |
+
{"text": instruction, "type": "text"},
|
146 |
+
],
|
147 |
+
}
|
148 |
+
]
|
149 |
+
|
150 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
151 |
+
inputs = processor(text=text, images=image, return_tensors="pt")
|
152 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
|
153 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
154 |
+
|
155 |
+
with torch.inference_mode(), torch.amp.autocast("cuda", dtype=torch.bfloat16):
|
156 |
+
output = model.generate(
|
157 |
+
**inputs,
|
158 |
+
max_new_tokens=50,
|
159 |
+
stop_strings=["<|im_end|>"],
|
160 |
+
tokenizer=processor.tokenizer,
|
161 |
+
# do_sample=True,
|
162 |
+
# temperature=0.9,
|
163 |
+
)
|
164 |
+
|
165 |
+
output_ids = output[0][inputs["input_ids"].shape[1] :]
|
166 |
+
response = processor.decode(output_ids, skip_special_tokens=True)
|
167 |
+
print(response)
|
168 |
+
|
169 |
+
coords = ast.literal_eval(response.replace("<|im_end|>", "").replace("```", "").replace(" ", "").strip())
|
170 |
+
```
|
171 |
+
|
172 |
+
## Citation
|
173 |
+
If you find our work helpful, please consider citing.
|
174 |
+
```
|
175 |
+
@article{ariaui,
|
176 |
+
title={Aria-UI: Visual Grounding for GUI Instructions},
|
177 |
+
author={Yuhao Yang and Yue Wang and Dongxu Li and Ziyang Luo and Bei Chen and Chao Huang and Junnan Li},
|
178 |
+
year={2024},
|
179 |
+
journal={arXiv preprint arXiv:2412.16256},
|
180 |
+
}
|
181 |
+
```
|