File size: 5,329 Bytes
60edbfc 8850ce7 3c10c11 60edbfc 3c10c11 8850ce7 9f21c83 8850ce7 9f21c83 8850ce7 3c10c11 8850ce7 527e7f8 8850ce7 527e7f8 3c10c11 8850ce7 3c10c11 8850ce7 3c10c11 8850ce7 3c10c11 8850ce7 3c10c11 8850ce7 3c10c11 8850ce7 3c10c11 8850ce7 9dec0f1 8850ce7 3c10c11 8850ce7 d0bd4c6 8850ce7 3c10c11 8850ce7 3c10c11 8850ce7 3c10c11 8850ce7 3c10c11 8850ce7 3c10c11 8850ce7 3c10c11 8850ce7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: text-generation
---
This model is fine tuned on top of llama-2-7b
DocsGPT is optimized for Documentation: Specifically fine-tuned for providing answers that are based on documentation provided in context, making it particularly useful for developers and technical support teams.
We used 50k high quality examples to finetune it over 1.5 days on A10G GPU.
We used lora fine tuning process.
Its an apache-2.0 license so you can use it for commercial purposes too.
# How to run it
```
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model = "Arc53/docsgpt-7b"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
sequences = pipeline(
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
max_length=200,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
Benchmarks are still WIP
To prepare your prompts make sure you keep this format:
```
### Instruction
(where the question goes)
### Context
(your document retrieval + system instructions)
### Answer
```
Here is an example comparing it to meta-llama/Llama-2-7b
Prompt:
```
### Instruction
Create a mock request to /api/answer in python
### Context
You are a DocsGPT, friendly and helpful AI assistant by Arc53 that provides help with documents. You give thorough answers with code examples if possible.
Use the following pieces of context to help answer the users question. If its not relevant to the question, provide friendly responses.
You have access to chat history, and can use it to help answer the question.
When using code examples, use the following format:
`` ` `` (language)
(code)
`` ` ``
----------------
/api/answer
Its a POST request that sends a JSON in body with 4 values. Here is a JavaScript fetch example
It will recieve an answer for a user provided question
`` ` ``
// answer (POST http://127.0.0.1:5000/api/answer)
fetch("http://127.0.0.1:5000/api/answer", {
"method": "POST",
"headers": {
"Content-Type": "application/json; charset=utf-8"
},
"body": JSON.stringify({"question":"Hi","history":null,"api_key":"OPENAI_API_KEY","embeddings_key":"OPENAI_API_KEY",
"active_docs": "javascript/.project/ES2015/openai_text-embedding-ada-002/"})
})
.then((res) => res.text())
.then(console.log.bind(console))
`` ` ``
In response you will get a json document like this one:
`` ` ``
{
"answer": " Hi there! How can I help you?\\n",
"query": "Hi",
"result": " Hi there! How can I help you?\\nSOURCES:"
}
`` ` ``
/api/docs_check
It will make sure documentation is loaded on a server (just run it everytime user is switching between libraries (documentations)
Its a POST request that sends a JSON in body with 1 value. Here is a JavaScript fetch example
`` ` ``
// answer (POST http://127.0.0.1:5000/api/docs_check)
fetch("http://127.0.0.1:5000/api/docs_check", {
"method": "POST",
"headers": {
"Content-Type": "application/json; charset=utf-8"
},
"body": JSON.stringify({"docs":"javascript/.project/ES2015/openai_text-embedding-ada-002/"})
})
.then((res) => res.text())
.then(console.log.bind(console))
`` ` ``
In response you will get a json document like this one:
`` ` ``
{
"status": "exists"
}
`` ` ``
Issues and Pull requests
We value contributions to our issues in form of discussion or suggestion, we recommend that you check out existing issues and our Roadmap
If you want to contribute by writing code there are few things that you should know before doing it:
We have frontend (React, Vite) and Backend (python)
### Answer
```
docsgpt-7b:
```
To create a mock request to `/api/answer` in Python, you can use the `requests` library. Here's an example:
`` ` ``python
import requests
# Set up the URL and headers
url = "http://127.0.0.1:5000/api/answer"
headers = {
"Content-Type": "application/json; charset=utf-8"
}
# Set up the JSON data to send in the request body
data = {
"question": "Hi",
"history": null,
"api_key": "OPENAI_API_KEY",
"embeddings_key": "OPENAI_API_KEY",
"active_docs": "javascript/.project/ES2015/openai_text-embedding-ada-002/"
}
# Send the request and get the response
response = requests.post(url, headers=headers, json=data)
# Print the response
print(response.text)
`` ` ``
This will send a POST request to `/api/answer` with the specified `question`, `history`, `api_key`, `embeddings_key`, and `active_docs` parameters. The response will be printed to the console.
Note that you will need to replace `127.0.0.1:5000` with the actual URL and port of your server. Also, make sure you have the necessary dependencies installed for `requests`.
```
The original meta-llama/Llama-2-7b:
```
### DocsGPT
### DocsGPT
### DocsGPT
### DocsGPT
```
|