File size: 7,964 Bytes
4397b98 6173d24 4397b98 6173d24 4397b98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
---
library_name: transformers
license:
- llama3.1
- gemma
base_model: google/gemma-2-27b
tags:
- axolotl
- generated_from_trainer
---
# Llama-Gemma-2-27b-SFT-trial1
## 概要
[google/gemma-2-27b](https://huggingface.co/google/gemma-2-27b)を教師あり学習によりInstruction Tuningしたモデルです。
[松尾研大規模言語モデル講座2024](https://weblab.t.u-tokyo.ac.jp/lecture/course-list/large-language-model/)のコンペ用の提出モデル作成の一環として作成・公開しています。
This model is built with Llama and Qwen.
## 使用データセット
- [Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered](https://huggingface.co/datasets/Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered)
- [Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted](https://huggingface.co/datasets/Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted)
- [Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered](https://huggingface.co/datasets/Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered)
- [Aratako/Open-Platypus-Japanese-masked-formatted](https://huggingface.co/datasets/Aratako/Open-Platypus-Japanese-masked-formatted)
- [kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja)
- [kanhatakeyama/ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)
- [Aratako/magpie-ultra-v0.1-formatted](https://huggingface.co/datasets/Aratako/magpie-ultra-v0.1-formatted)
- [Aratako/orca-agentinstruct-1M-v1-selected](https://huggingface.co/datasets/Aratako/orca-agentinstruct-1M-v1-selected)
- [Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k](https://huggingface.co/datasets/Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k)
## ライセンス
本モデルは学習に利用したデータの関係で以下のライセンスの影響を受けます。
- [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/)を継承します。
- [Gemma Terms of Use](https://ai.google.dev/gemma/terms)を継承します。
- [Qwen LICENSE AGREEMENT](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE)の影響を受けます。ライセンスは継承しませんが、「Built with Qwen」のような文言を記載する必要があります。
## 学習に関する詳細
本モデルの学習には[axolotl](https://github.com/axolotl-ai-cloud/axolotl)を使いました。パラメータ等の学習の設定は下記の自動生成された記述をご確認ください。
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.5.2`
```yaml
base_model: google/gemma-2-27b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
hub_model_id: Aratako/fft-1
hub_strategy: "end"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_cross_entropy: false
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: gemma
datasets:
- path: Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
- path: Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
- path: Aratako/Open-Platypus-Japanese-masked-formatted
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
- path: kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: kanhatakeyama/ramdom-to-fixed-multiturn-Calm3
split: 20240806filtered
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: Aratako/magpie-ultra-v0.1-formatted
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
- path: Aratako/orca-agentinstruct-1M-v1-selected
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
shuffle_merged_datasets: true
dataset_prepared_path: /workspace/data/fft-data
val_set_size: 0.003
output_dir: /workspace/data/27b-fft-out-1
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: 27b-fft
wandb_entity: aratako-lm
wandb_watch:
wandb_name: attempt-01
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler:
cosine_min_lr_ratio: 0.1
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
save_strategy: steps
save_steps: 100
save_total_limit: 2
warmup_steps: 10
eval_steps: 100
eval_batch_size: 1
eval_table_size:
eval_max_new_tokens:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token: <pad>
```
</details><br>
# fft-1
This model is a fine-tuned version of [google/gemma-2-27b](https://huggingface.co/google/gemma-2-27b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6122
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- gradient_accumulation_steps: 4
- total_train_batch_size: 224
- total_eval_batch_size: 7
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9427 | 0.0020 | 1 | 0.9940 |
| 0.6566 | 0.2043 | 100 | 0.6648 |
| 0.6609 | 0.4086 | 200 | 0.6430 |
| 0.6457 | 0.6129 | 300 | 0.6306 |
| 0.6322 | 0.8172 | 400 | 0.6203 |
| 0.5082 | 1.0204 | 500 | 0.6238 |
| 0.5348 | 1.2247 | 600 | 0.6212 |
| 0.5253 | 1.4290 | 700 | 0.6181 |
| 0.5136 | 1.6333 | 800 | 0.6147 |
| 0.5125 | 1.8376 | 900 | 0.6122 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|