File size: 8,005 Bytes
4397b98
 
6173d24
 
 
4397b98
 
 
 
 
 
 
 
 
6173d24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4397b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
---
library_name: transformers
license: 
  - llama3.1
  - gemma
base_model: google/gemma-2-27b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: fft-1
  results: []
---

# Llama-Gemma-2-27b-SFT-trial1

## 概要

[google/gemma-2-27b](https://huggingface.co/google/gemma-2-27b)を教師あり学習によりInstruction Tuningしたモデルです。

[松尾研大規模言語モデル講座2024](https://weblab.t.u-tokyo.ac.jp/lecture/course-list/large-language-model/)のコンペ用の提出モデル作成の一環として作成・公開しています。

This model is built with Llama and Qwen.

## 使用データセット

- [Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered](https://huggingface.co/datasets/Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered)
- [Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted](https://huggingface.co/datasets/Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted)
- [Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered](https://huggingface.co/datasets/Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered)
- [Aratako/Open-Platypus-Japanese-masked-formatted](https://huggingface.co/datasets/Aratako/Open-Platypus-Japanese-masked-formatted)
- [kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja)
- [kanhatakeyama/ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)
- [Aratako/magpie-ultra-v0.1-formatted](https://huggingface.co/datasets/Aratako/magpie-ultra-v0.1-formatted)
- [Aratako/orca-agentinstruct-1M-v1-selected](https://huggingface.co/datasets/Aratako/orca-agentinstruct-1M-v1-selected)
- [Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k](https://huggingface.co/datasets/Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k)

## ライセンス

本モデルは学習に利用したデータの関係で以下のライセンスの影響を受けます。

- [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/)を継承します。
- [Gemma Terms of Use](https://ai.google.dev/gemma/terms)を継承します。
- [Qwen LICENSE AGREEMENT](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE)の影響を受けます。ライセンスは継承しませんが、「Built with Qwen」のような文言を記載する必要があります。

## 学習に関する詳細

本モデルの学習には[axolotl](https://github.com/axolotl-ai-cloud/axolotl)を使いました。パラメータ等の学習の設定は下記の自動生成された記述をご確認ください。

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.5.2`
```yaml
base_model: google/gemma-2-27b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

hub_model_id: Aratako/fft-1
hub_strategy: "end"
push_dataset_to_hub:
hf_use_auth_token: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_cross_entropy: false
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: gemma

datasets:
  - path: Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered
    type: chat_template
    field_messages: messages
    message_field_role: role
    message_field_content: content
  - path: Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted
    type: chat_template
    field_messages: conversations
    message_field_role: role
    message_field_content: content
  - path: Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered
    type: chat_template
    field_messages: conversations
    message_field_role: role
    message_field_content: content
  - path: Aratako/Open-Platypus-Japanese-masked-formatted
    type: chat_template
    field_messages: conversations
    message_field_role: role
    message_field_content: content
  - path: kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja
    type: chat_template
    field_messages: messages
    message_field_role: role
    message_field_content: content
  - path: kanhatakeyama/ramdom-to-fixed-multiturn-Calm3
    split: 20240806filtered
    type: chat_template
    field_messages: messages
    message_field_role: role
    message_field_content: content
  - path: Aratako/magpie-ultra-v0.1-formatted
    type: chat_template
    field_messages: conversations
    message_field_role: role
    message_field_content: content
  - path: Aratako/orca-agentinstruct-1M-v1-selected
    type: chat_template
    field_messages: messages
    message_field_role: role
    message_field_content: content
  - path: Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k
    type: chat_template
    field_messages: messages
    message_field_role: role
    message_field_content: content

shuffle_merged_datasets: true
dataset_prepared_path: /workspace/data/fft-data
val_set_size: 0.003
output_dir: /workspace/data/27b-fft-out-1

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: 27b-fft
wandb_entity: aratako-lm
wandb_watch:
wandb_name: attempt-01
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: 
cosine_min_lr_ratio: 0.1
learning_rate: 0.00001

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

save_strategy: steps
save_steps: 100
save_total_limit: 2

warmup_steps: 10
eval_steps: 100
eval_batch_size: 1
eval_table_size:
eval_max_new_tokens:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
  pad_token: <pad>

```

</details><br>

# fft-1

This model is a fine-tuned version of [google/gemma-2-27b](https://huggingface.co/google/gemma-2-27b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6122

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- gradient_accumulation_steps: 4
- total_train_batch_size: 224
- total_eval_batch_size: 7
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9427        | 0.0020 | 1    | 0.9940          |
| 0.6566        | 0.2043 | 100  | 0.6648          |
| 0.6609        | 0.4086 | 200  | 0.6430          |
| 0.6457        | 0.6129 | 300  | 0.6306          |
| 0.6322        | 0.8172 | 400  | 0.6203          |
| 0.5082        | 1.0204 | 500  | 0.6238          |
| 0.5348        | 1.2247 | 600  | 0.6212          |
| 0.5253        | 1.4290 | 700  | 0.6181          |
| 0.5136        | 1.6333 | 800  | 0.6147          |
| 0.5125        | 1.8376 | 900  | 0.6122          |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3