EchoLLaMA-1B / README.md
suayptalha's picture
Update README.md
69130a8 verified
---
library_name: transformers
tags:
- EchoLLaMA
license: apache-2.0
datasets:
- AquaLabs/Spatial-DPO-Dataset
language:
- en
base_model:
- meta-llama/Llama-3.2-1B-Instruct
pipeline_tag: text-generation
---
# EchoLLaMA: 3D-to-Speech with Multimodal AI
[![Hugging Face](https://img.shields.io/badge/Hugging%20Face-EchoLLaMA--1B-yellow)](https://huggingface.co/AquaLabs/EchoLLaMA-1B)
[![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Orpheus--3B--0.1--ft--Elise-blue)](https://huggingface.co/AquaLabs/Orpheus-3B-0.1-ft-Elise)
[![Hugging Face](https://img.shields.io/badge/Dataset-Spatial--DPO--Dataset-green)](https://huggingface.co/datasets/AquaLabs/Spatial-DPO-Dataset/)
## Overview
EchoLLaMA is a multimodal AI system that transforms 3D visual data into natural spoken descriptions while enabling interactive dialogue through speech input. This repository contains the implementation of the LLaMA-3.2-1B-Instruct model fine-tuned with Direct Preference Optimization (DPO) for generating rich textual descriptions of 3D scenes.
## Model Architecture
The EchoLLaMA pipeline integrates four specialized models:
1. **Image Analysis**:
- DETR (DEtection TRansformer) for object detection
- MiDaS for monocular depth estimation
- Moondream for holistic image captioning
2. **Text Generation**:
- LLaMA-3.2-1B-Instruct fine-tuned with DPO
3. **Speech Synthesis**:
- Orpheus-3B-0.1-ft TTS model fine-tuned on the Elise English speech dataset
4. **Speech Recognition**:
- SpeechRecognition package for transcribing user speech input
## Key Features
- **3D Object Detection Matrix**: Constructs a grid-based representation of detected objects with spatial coordinates
- **Depth-Aware Scene Understanding**: Incorporates relative depth values to capture 3D relationships
- **Natural Language Generation**: Produces coherent and contextually rich descriptions
- **High-Quality Speech Synthesis**: Converts textual descriptions into natural-sounding speech
## Training Details
### LLaMA Model
The LLaMA-3.2-1B-Instruct model was fine-tuned using:
- **Technique**: Direct Preference Optimization (DPO) with LoRA
- **Dataset**: 2000 samples from COCO 2017 processed with DETR, and Moondream
- **Chosen Responses**: Generated by DeepSeek-V3-0324
- **Rejected Responses**: Generated by pre-fine-tuned LLaMA-3.2-1B-Instruct
- **Training Parameters**:
- LoRA Rank: 8
- β (DPO): 0.1
- Learning Rate: 2×10⁻⁵ with cosine decay
- Batch Size: 16 (with 2×8 accumulation)
- Sequence Length: 8192
- **Hardware**: 2×T4 GPU
- **Training Time**: 1 hour 40 minutes
### Orpheus Model
The Orpheus-3B-0.1-ft TTS model was fine-tuned using:
- **Technique**: Low-Rank Adaptation (LoRA)
- **Dataset**: Elise English speech dataset
- **Training Parameters**:
- LoRA Rank (r): 64
- LoRA Alpha (α): 64
- LoRA Dropout: 0
- Learning Rate: 2×10⁻⁴
- **Hardware**: 2×T4 GPU
- **Training Time**: 47 minutes
## Usage
### Installation
```bash
# Clone the repository
git clone https://github.com/The-Aqua-Labs/EchoLLaMA-Pipeline.git
cd EchoLLaMA-Pipeline
```
And run the Jupyter Notebook file.
## Pipeline Flow
1. Image is processed with DETR for object detection and MiDaS for depth estimation
2. Moondream generates a caption describing the image content
3. The object detection matrix and caption are combined into a prompt
4. LLaMA-3.2-1B-Instruct generates a detailed textual description
5. Orpheus-3B-0.1-ft converts the text into speech
## Dataset
The training dataset contains 1999 samples, each consisting of:
- An image-derived prompt with object detection matrix and caption
- A chosen response from DeepSeek-V3-0324
- A rejected response from LLaMA-3.2-1B-Instruct
You can access the dataset at [AquaLabs/Spatial-DPO-Dataset](https://huggingface.co/datasets/AquaLabs/Spatial-DPO-Dataset/)
## Model Weights
- LLaMA-3.2-1B-Instruct (fine-tuned): [AquaLabs/EchoLLaMA-1B](https://huggingface.co/AquaLabs/EchoLLaMA-1B)
- Orpheus-3B-0.1-ft (fine-tuned): [AquaLabs/Orpheus-3B-0.1-ft-Elise](https://huggingface.co/AquaLabs/Orpheus-3B-0.1-ft-Elise)
## Contributors
- Ahmet Erdem Pamuk - [GitHub](https://github.com/ahmeterdempmk) | [Hugging Face](https://huggingface.co/ahmeterdempmk)
- Emir Kaan Özdemir - [GitHub](https://github.com/emirkaanozdemr) | [Hugging Face](https://huggingface.co/emirkaanozdemr)
- Şuayp Talha Kocabay - [GitHub](https://github.com/suayptalha) | [Hugging Face](https://huggingface.co/suayptalha)
## License
This project is licensed under the Apache-2.0 License.
Details are provided in the [paper]().