Transformers
Inference Endpoints
Apel-sin commited on
Commit
b230950
1 Parent(s): 850ecf8

add measurement.json

Browse files
Files changed (2) hide show
  1. README.md +118 -0
  2. measurement.json +0 -0
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: llama3
4
+ datasets:
5
+ - aqua_rat
6
+ - microsoft/orca-math-word-problems-200k
7
+ - m-a-p/CodeFeedback-Filtered-Instruction
8
+ ---
9
+
10
+ # Smaug-Llama-3-70B-Instruct-32K
11
+
12
+ ### Built with Meta Llama 3
13
+
14
+ This is a 32K version of Smaug-Llama-3-70B-Instruct. It uses PoSE (https://arxiv.org/abs/2309.10400) and LoRA (https://arxiv.org/abs/2106.09685) adapter transfer. More details are coming soon.
15
+
16
+ Needle-In-A-Haystack (https://github.com/jzhang38/EasyContext) heatmap:
17
+
18
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/8Z5XgqrZXKcb2hmeTKTT6.png)
19
+
20
+ ### Model Description
21
+
22
+ - **Developed by:** [Abacus.AI](https://abacus.ai)
23
+ - **License:** https://llama.meta.com/llama3/license/
24
+ - **Finetuned from model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct).
25
+
26
+ ## How to use
27
+
28
+ The prompt format is unchanged from Llama 3 70B Instruct.
29
+
30
+ ### Use with transformers
31
+
32
+ See the snippet below for usage with Transformers:
33
+
34
+ ```python
35
+ import transformers
36
+ import torch
37
+
38
+ model_id = "abacusai/Smaug-Llama-3-70B-Instruct"
39
+
40
+ pipeline = transformers.pipeline(
41
+ "text-generation",
42
+ model=model_id,
43
+ model_kwargs={"torch_dtype": torch.bfloat16},
44
+ device_map="auto",
45
+ )
46
+
47
+ messages = [
48
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
49
+ {"role": "user", "content": "Who are you?"},
50
+ ]
51
+
52
+ prompt = pipeline.tokenizer.apply_chat_template(
53
+ messages,
54
+ tokenize=False,
55
+ add_generation_prompt=True
56
+ )
57
+
58
+ terminators = [
59
+ pipeline.tokenizer.eos_token_id,
60
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
61
+ ]
62
+
63
+ outputs = pipeline(
64
+ prompt,
65
+ max_new_tokens=256,
66
+ eos_token_id=terminators,
67
+ do_sample=True,
68
+ temperature=0.6,
69
+ top_p=0.9,
70
+ )
71
+ print(outputs[0]["generated_text"][len(prompt):])
72
+ ```
73
+
74
+
75
+ ## Evaluation
76
+
77
+ ### Arena-Hard
78
+
79
+ ### Arena-Hard
80
+
81
+ Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology.
82
+
83
+ | Model | Score | 95% Confidence Interval | Average Tokens |
84
+ | :---- | ---------: | ----------: | ------: |
85
+ | GPT-4-Turbo-2024-04-09 | 82.6 | (-1.8, 1.6) | 662 |
86
+ | GPT-4o | 78.3 | (-2.4, 2.1) | 685 |
87
+ | Gemini-1.5-pro-latest | 72.1 | (-2.3, 2.2) | 630 |
88
+ | Claude-3-Opus-20240229 | 60.4 | (-3.3, 2.4) | 541 |
89
+ | **Smaug-Llama-3-70B-Instruct-32K** | 60.0 | (-2.6, 2.1) | 844 |
90
+ | Smaug-Llama-3-70B-Instruct | 56.7 | (-2.2, 2.6) | 661 |
91
+ | GPT-4-0314 | 50.0 | (-0.0, 0.0) | 423 |
92
+ | Claude-3-Sonnet-20240229 | 46.8 | (-2.1, 2.2) | 552 |
93
+ | Llama-3-70B-Instruct | 41.1 | (-2.5, 2.4) | 583 |
94
+ | GPT-4-0613 | 37.9 | (-2.2, 2.0) | 354 |
95
+ | Mistral-Large-2402 | 37.7 | (-1.9, 2.6) | 400 |
96
+ | Mixtral-8x22B-Instruct-v0.1 | 36.4 | (-2.7, 2.9) | 430 |
97
+ | Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2) | 474 |
98
+ | Command-R-Plus | 33.1 | (-2.1, 2.2) | 541 |
99
+ | Mistral-Medium | 31.9 | (-2.3, 2.4) | 485 |
100
+ | GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0) | 401 |
101
+
102
+ Note that we believe the number of tokens/verbosity of the model strongly influences the GPT-4 judge in this case, and at least partially explains the improvement in Arena-Hard score for the 32K model.
103
+
104
+ ### OpenLLM Leaderboard Manual Evaluation
105
+
106
+ | Model | ARC | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K* | Average |
107
+ | :---- | ---: | ------: | ---: | ---: | ---: | ---: | ---: |
108
+ | Smaug-Llama-3-70B-Instruct-32K | 70.1 | TBA | TBA | 61.9 | 82.2 | TBA | TBA |
109
+ | Llama-3-70B-Instruct | 71.4 | 85.7 | 80.0 | 61.8 | 82.9 | 91.1 | 78.8 |
110
+
111
+ **GSM8K** The GSM8K numbers quoted here are computed using a recent release
112
+ of the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness/).
113
+ The commit used by the leaderboard has a significant issue that impacts models that
114
+ tend to use `:` in their responses due to a bug in the stop word configuration for
115
+ GSM8K. The issue is covered in more detail in this
116
+ [GSM8K evaluation discussion](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/770).
117
+ The score for both Llama-3 and this model are significantly different when evaluated
118
+ with the updated harness as the issue with stop words has been addressed.
measurement.json ADDED
The diff for this file is too large to render. See raw diff