Update README.md
Browse files
README.md
CHANGED
@@ -14,44 +14,43 @@ tags:
|
|
14 |
- emotions-classifier
|
15 |
---
|
16 |
|
17 |
-
#
|
18 |
|
19 |
This is a fine-tuned version of [microsoft/deberta-xlarge-mnli](https://huggingface.co/microsoft/deberta-xlarge-mnli) for emotion detection on the [dair-ai/emotion](https://huggingface.co/dair-ai/emotion) dataset.
|
20 |
|
21 |
-
##
|
22 |
|
23 |
Emotion-X is a state-of-the-art emotion detection model fine-tuned from Microsoft's DeBERTa-Xlarge model. Designed to accurately classify text into one of six emotional categories, Emotion-X leverages the robust capabilities of DeBERTa and fine-tunes it on a comprehensive emotion dataset, ensuring high accuracy and reliability.
|
24 |
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
- **π Base Model:** `microsoft/deberta-xlarge-mnli`
|
30 |
-
- **π Dataset:** [dair-ai/emotion](https://huggingface.co/dair-ai/emotion)
|
31 |
-
- **βοΈ Fine-tuning:** This model was fine-tuned for emotion detection with a classification head for six emotional categories (anger, disgust, fear, joy, sadness, surprise).
|
32 |
-
|
33 |
-
## ποΈ Training
|
34 |
|
35 |
The model was trained using the following parameters:
|
36 |
|
37 |
-
-
|
38 |
-
-
|
39 |
-
-
|
40 |
-
-
|
41 |
|
42 |
-
###
|
43 |
|
44 |
-
-
|
45 |
-
-
|
46 |
-
-
|
47 |
-
-
|
48 |
-
-
|
49 |
-
-
|
50 |
-
-
|
51 |
-
-
|
52 |
-
-
|
53 |
|
54 |
-
##
|
55 |
|
56 |
You can use this model directly with the Hugging Face `transformers` library:
|
57 |
|
@@ -75,28 +74,25 @@ emotion = predict_emotion(text)
|
|
75 |
print("Detected Emotion:", emotion)
|
76 |
```
|
77 |
|
78 |
-
##
|
79 |
-
-
|
80 |
-
-
|
81 |
-
-
|
82 |
-
-
|
83 |
-
-
|
84 |
-
-
|
85 |
-
|
86 |
|
87 |
-
##
|
88 |
|
89 |
-
| Parameter | Value
|
90 |
-
|
91 |
| Model Name | microsoft/deberta-xlarge-mnli |
|
92 |
-
| Training Dataset | dair-ai/emotion
|
93 |
-
|
|
94 |
-
|
|
95 |
-
|
|
96 |
-
|
|
97 |
-
| Best Model Accuracy | 94.6% |
|
98 |
-
|
99 |
|
100 |
-
##
|
101 |
|
102 |
-
This model is licensed under the [MIT License](LICENSE).
|
|
|
14 |
- emotions-classifier
|
15 |
---
|
16 |
|
17 |
+
# Emotion-X: Fine-tuned DeBERTa-Xlarge Based Emotion Detection
|
18 |
|
19 |
This is a fine-tuned version of [microsoft/deberta-xlarge-mnli](https://huggingface.co/microsoft/deberta-xlarge-mnli) for emotion detection on the [dair-ai/emotion](https://huggingface.co/dair-ai/emotion) dataset.
|
20 |
|
21 |
+
## Overview
|
22 |
|
23 |
Emotion-X is a state-of-the-art emotion detection model fine-tuned from Microsoft's DeBERTa-Xlarge model. Designed to accurately classify text into one of six emotional categories, Emotion-X leverages the robust capabilities of DeBERTa and fine-tunes it on a comprehensive emotion dataset, ensuring high accuracy and reliability.
|
24 |
|
25 |
+
## Model Details
|
26 |
|
27 |
+
- **Model Name:** `AnkitAI/deberta-xlarge-base-emotions-classifier`
|
28 |
+
- **Base Model:** `microsoft/deberta-xlarge-mnli`
|
29 |
+
- **Dataset:** [dair-ai/emotion](https://huggingface.co/dair-ai/emotion)
|
30 |
+
- **Fine-tuning:** This model was fine-tuned for emotion detection with a classification head for six emotional categories (anger, disgust, fear, joy, sadness, surprise).
|
31 |
|
32 |
+
## Training
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
The model was trained using the following parameters:
|
35 |
|
36 |
+
- **Learning Rate:** 2e-5
|
37 |
+
- **Batch Size:** 4
|
38 |
+
- **Weight Decay:** 0.01
|
39 |
+
- **Evaluation Strategy:** Epoch
|
40 |
|
41 |
+
### Training Details
|
42 |
|
43 |
+
- **Evaluation Loss:** 0.0858
|
44 |
+
- **Evaluation Runtime:** 110070.6349 seconds
|
45 |
+
- **Evaluation Samples/Second:** 78.495
|
46 |
+
- **Evaluation Steps/Second:** 2.453
|
47 |
+
- **Training Loss:** 0.1049
|
48 |
+
- **Evaluation Accuracy:** 94.6%
|
49 |
+
- **Evaluation Precision:** 94.8%
|
50 |
+
- **Evaluation Recall:** 94.5%
|
51 |
+
- **Evaluation F1 Score:** 94.7%
|
52 |
|
53 |
+
## Usage
|
54 |
|
55 |
You can use this model directly with the Hugging Face `transformers` library:
|
56 |
|
|
|
74 |
print("Detected Emotion:", emotion)
|
75 |
```
|
76 |
|
77 |
+
## Emotion Labels
|
78 |
+
- Anger
|
79 |
+
- Disgust
|
80 |
+
- Fear
|
81 |
+
- Joy
|
82 |
+
- Sadness
|
83 |
+
- Surprise
|
|
|
84 |
|
85 |
+
## Model Card Data
|
86 |
|
87 |
+
| Parameter | Value |
|
88 |
+
|-------------------------------|------------------------------|
|
89 |
| Model Name | microsoft/deberta-xlarge-mnli |
|
90 |
+
| Training Dataset | dair-ai/emotion |
|
91 |
+
| Learning Rate | 2e-5 |
|
92 |
+
| Per Device Train Batch Size | 4 |
|
93 |
+
| Evaluation Strategy | Epoch |
|
94 |
+
| Best Model Accuracy | 94.6% |
|
|
|
|
|
95 |
|
96 |
+
## License
|
97 |
|
98 |
+
This model is licensed under the [MIT License](LICENSE).
|