AnkitAI commited on
Commit
93cbb97
β€’
1 Parent(s): cee40d6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -44
README.md CHANGED
@@ -14,44 +14,43 @@ tags:
14
  - emotions-classifier
15
  ---
16
 
17
- # 🌟 Emotion-X: Fine-tuned DeBERTa-Xlarge Based Emotion Detection 🌟
18
 
19
  This is a fine-tuned version of [microsoft/deberta-xlarge-mnli](https://huggingface.co/microsoft/deberta-xlarge-mnli) for emotion detection on the [dair-ai/emotion](https://huggingface.co/dair-ai/emotion) dataset.
20
 
21
- ## πŸš€ Overview
22
 
23
  Emotion-X is a state-of-the-art emotion detection model fine-tuned from Microsoft's DeBERTa-Xlarge model. Designed to accurately classify text into one of six emotional categories, Emotion-X leverages the robust capabilities of DeBERTa and fine-tunes it on a comprehensive emotion dataset, ensuring high accuracy and reliability.
24
 
 
25
 
26
- ## πŸ“œ Model Details
 
 
 
27
 
28
- - **πŸ†• Model Name:** `AnkitAI/deberta-xlarge-base-emotions-classifier`
29
- - **πŸ”— Base Model:** `microsoft/deberta-xlarge-mnli`
30
- - **πŸ“Š Dataset:** [dair-ai/emotion](https://huggingface.co/dair-ai/emotion)
31
- - **βš™οΈ Fine-tuning:** This model was fine-tuned for emotion detection with a classification head for six emotional categories (anger, disgust, fear, joy, sadness, surprise).
32
-
33
- ## πŸ‹οΈ Training
34
 
35
  The model was trained using the following parameters:
36
 
37
- - **πŸ”§ Learning Rate:** 2e-5
38
- - **πŸ“¦ Batch Size:** 4
39
- - **βš–οΈ Weight Decay:** 0.01
40
- - **πŸ“… Evaluation Strategy:** Epoch
41
 
42
- ### πŸ‹οΈ Training Details
43
 
44
- - **πŸ“‰ Eval Loss:** 0.0858
45
- - **⏱️ Eval Runtime:** 110070.6349 seconds
46
- - **πŸ“ˆ Eval Samples/Second:** 78.495
47
- - **πŸŒ€ Eval Steps/Second:** 2.453
48
- - **πŸ“‰ Train Loss:** 0.1049
49
- - **⏳ Eval Accuracy:** 94.6%
50
- - **πŸŒ€ Eval Precision:** 94.8%
51
- - **⏱️ Eval Recall:** 94.5%
52
- - **πŸ“ˆ Eval F1 Score:** 94.7%
53
 
54
- ## πŸš€ Usage
55
 
56
  You can use this model directly with the Hugging Face `transformers` library:
57
 
@@ -75,28 +74,25 @@ emotion = predict_emotion(text)
75
  print("Detected Emotion:", emotion)
76
  ```
77
 
78
- ## πŸ“ Emotion Labels
79
- - 😠 Anger
80
- - 🀒 Disgust
81
- - 😨 Fear
82
- - 😊 Joy
83
- - 😒 Sadness
84
- - 😲 Surprise
85
-
86
 
87
- ## πŸ“œ Model Card Data
88
 
89
- | Parameter | Value |
90
- |-------------------------------|---------------------------|
91
  | Model Name | microsoft/deberta-xlarge-mnli |
92
- | Training Dataset | dair-ai/emotion |
93
- | Number of Training Epochs | 3 |
94
- | Learning Rate | 2e-5 |
95
- | Per Device Train Batch Size | 4 |
96
- | Evaluation Strategy | Epoch |
97
- | Best Model Accuracy | 94.6% |
98
-
99
 
100
- ## πŸ“œ License
101
 
102
- This model is licensed under the [MIT License](LICENSE).
 
14
  - emotions-classifier
15
  ---
16
 
17
+ # Emotion-X: Fine-tuned DeBERTa-Xlarge Based Emotion Detection
18
 
19
  This is a fine-tuned version of [microsoft/deberta-xlarge-mnli](https://huggingface.co/microsoft/deberta-xlarge-mnli) for emotion detection on the [dair-ai/emotion](https://huggingface.co/dair-ai/emotion) dataset.
20
 
21
+ ## Overview
22
 
23
  Emotion-X is a state-of-the-art emotion detection model fine-tuned from Microsoft's DeBERTa-Xlarge model. Designed to accurately classify text into one of six emotional categories, Emotion-X leverages the robust capabilities of DeBERTa and fine-tunes it on a comprehensive emotion dataset, ensuring high accuracy and reliability.
24
 
25
+ ## Model Details
26
 
27
+ - **Model Name:** `AnkitAI/deberta-xlarge-base-emotions-classifier`
28
+ - **Base Model:** `microsoft/deberta-xlarge-mnli`
29
+ - **Dataset:** [dair-ai/emotion](https://huggingface.co/dair-ai/emotion)
30
+ - **Fine-tuning:** This model was fine-tuned for emotion detection with a classification head for six emotional categories (anger, disgust, fear, joy, sadness, surprise).
31
 
32
+ ## Training
 
 
 
 
 
33
 
34
  The model was trained using the following parameters:
35
 
36
+ - **Learning Rate:** 2e-5
37
+ - **Batch Size:** 4
38
+ - **Weight Decay:** 0.01
39
+ - **Evaluation Strategy:** Epoch
40
 
41
+ ### Training Details
42
 
43
+ - **Evaluation Loss:** 0.0858
44
+ - **Evaluation Runtime:** 110070.6349 seconds
45
+ - **Evaluation Samples/Second:** 78.495
46
+ - **Evaluation Steps/Second:** 2.453
47
+ - **Training Loss:** 0.1049
48
+ - **Evaluation Accuracy:** 94.6%
49
+ - **Evaluation Precision:** 94.8%
50
+ - **Evaluation Recall:** 94.5%
51
+ - **Evaluation F1 Score:** 94.7%
52
 
53
+ ## Usage
54
 
55
  You can use this model directly with the Hugging Face `transformers` library:
56
 
 
74
  print("Detected Emotion:", emotion)
75
  ```
76
 
77
+ ## Emotion Labels
78
+ - Anger
79
+ - Disgust
80
+ - Fear
81
+ - Joy
82
+ - Sadness
83
+ - Surprise
 
84
 
85
+ ## Model Card Data
86
 
87
+ | Parameter | Value |
88
+ |-------------------------------|------------------------------|
89
  | Model Name | microsoft/deberta-xlarge-mnli |
90
+ | Training Dataset | dair-ai/emotion |
91
+ | Learning Rate | 2e-5 |
92
+ | Per Device Train Batch Size | 4 |
93
+ | Evaluation Strategy | Epoch |
94
+ | Best Model Accuracy | 94.6% |
 
 
95
 
96
+ ## License
97
 
98
+ This model is licensed under the [MIT License](LICENSE).