File size: 1,950 Bytes
b600dc8 cfac3d9 ec7c5da b600dc8 ec7c5da b600dc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- unsloth
- generated_from_trainer
base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit
model-index:
- name: mistral-ViMMRC-Answer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-ViMMRC-Answer
This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3510
- Accuracy: 0.7495
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
- ViMMRC train and test set
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 9.7542 | 0.3306 | 10 | 13.9251 |
| 1.028 | 0.6612 | 20 | 0.7210 |
| 0.7005 | 0.9917 | 30 | 0.4852 |
| 0.6566 | 1.3223 | 40 | 0.5006 |
| 0.6531 | 1.6529 | 50 | 0.5238 |
| 0.6723 | 1.9835 | 60 | 0.3989 |
| 0.6305 | 2.3140 | 70 | 0.3477 |
| 0.6254 | 2.6446 | 80 | 0.3510 |
| 0.6143 | 2.9752 | 90 | 0.3516 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1 |