File size: 1,950 Bytes
b600dc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfac3d9
ec7c5da
b600dc8
 
 
 
 
 
 
 
 
 
 
ec7c5da
b600dc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- unsloth
- generated_from_trainer
base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit
model-index:
- name: mistral-ViMMRC-Answer
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral-ViMMRC-Answer

This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3510
- Accuracy: 0.7495

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

- ViMMRC train and test set

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 9.7542        | 0.3306 | 10   | 13.9251         |
| 1.028         | 0.6612 | 20   | 0.7210          |
| 0.7005        | 0.9917 | 30   | 0.4852          |
| 0.6566        | 1.3223 | 40   | 0.5006          |
| 0.6531        | 1.6529 | 50   | 0.5238          |
| 0.6723        | 1.9835 | 60   | 0.3989          |
| 0.6305        | 2.3140 | 70   | 0.3477          |
| 0.6254        | 2.6446 | 80   | 0.3510          |
| 0.6143        | 2.9752 | 90   | 0.3516          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1