Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,24 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
This repo contains a low-rank adapter for LLaMA-13b fit on the Stanford Alpaca dataset.
|
2 |
+
|
3 |
+
This version of the weights was trained on dual RTX3090 with the following hyperparameters:
|
4 |
+
|
5 |
+
Epochs: 10
|
6 |
+
Batch size: 128
|
7 |
+
Cutoff length: 256
|
8 |
+
Learning rate: 3e-4
|
9 |
+
Lora r: 16
|
10 |
+
Lora alpha: 16
|
11 |
+
Lora target modules: q_proj, k_proj, v_proj, o_proj
|
12 |
+
That is:
|
13 |
+
|
14 |
+
OMP_NUM_THREADS=4 WORLD_SIZE=2 CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node=2 --master_port=1234 finetune.py \
|
15 |
+
--base_model='decapoda-research/llama-13b-hf' \
|
16 |
+
--data_path="yahma/alpaca-cleaned' \
|
17 |
+
--num_epochs=10 \
|
18 |
+
--output_dir='./lora-alpaca-13b-256-qkvo' \
|
19 |
+
--lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \
|
20 |
+
--lora_r=16 \
|
21 |
+
--val_set_size=0 \
|
22 |
+
--micro_batch_size=32
|
23 |
+
|
24 |
+
Instructions for running it can be found at https://github.com/tloen/alpaca-lora.
|