AndyChiang commited on
Commit
5401b6d
1 Parent(s): f2cd2b9

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.87 +/- 0.81
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d3d7b62ce66d2f98519dc7c9efb4fe1f6c8e308b414978eb1e1cf1f24080696
3
+ size 108147
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd9b9b82440>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fd9b9b85440>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1686129912197728107,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYN3nPj+4ezxWlQc/YN3nPj+4ezxWlQc/YN3nPj+4ezxWlQc/YN3nPj+4ezxWlQc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMj7Cv8Siwz/5d2e/jKiVva/7KL72KnC+FTwmvwYh0z8ASru+PmlnvRrtuz+tnia/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABg3ec+P7h7PFaVBz8mlm+3vbvqOqZJUrtg3ec+P7h7PFaVBz8mlm+3vbvqOqZJUrtg3ec+P7h7PFaVBz8mlm+3vbvqOqZJUrtg3ec+P7h7PFaVBz8mlm+3vbvqOqZJUruUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.45286083 0.01536375 0.52962244]\n [0.45286083 0.01536375 0.52962244]\n [0.45286083 0.01536375 0.52962244]\n [0.45286083 0.01536375 0.52962244]]",
38
+ "desired_goal": "[[-1.517523 1.5284047 -0.9041744 ]\n [-0.07307538 -0.1650226 -0.23453888]\n [-0.6493543 1.6494453 -0.36579895]\n [-0.05649685 1.4681733 -0.6508587 ]]",
39
+ "observation": "[[ 4.5286083e-01 1.5363752e-02 5.2962244e-01 -1.4280469e-05\n 1.7908734e-03 -3.2087355e-03]\n [ 4.5286083e-01 1.5363752e-02 5.2962244e-01 -1.4280469e-05\n 1.7908734e-03 -3.2087355e-03]\n [ 4.5286083e-01 1.5363752e-02 5.2962244e-01 -1.4280469e-05\n 1.7908734e-03 -3.2087355e-03]\n [ 4.5286083e-01 1.5363752e-02 5.2962244e-01 -1.4280469e-05\n 1.7908734e-03 -3.2087355e-03]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAax28vKf4yb3Ss40+j+blPV0/ib0FbEQ+5l3avXg+qL0YzRg+a4gWvplEsz1ZAe49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.02296325 -0.0986188 0.27676255]\n [ 0.11225616 -0.06701539 0.19181831]\n [-0.10662441 -0.0821504 0.14921987]\n [-0.14700477 0.08753318 0.11621351]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgh/VsN+T9L+UhpRSlIwBbJRLMowBdJRHQKV01R8+ial1fZQoaAZoCWgPQwhuwVJdwMv+v5SGlFKUaBVLMmgWR0CldJtuLrHEdX2UKGgGaAloD0MIv3/z4sQX+r+UhpRSlGgVSzJoFkdApXRiZKFqSHV9lChoBmgJaA9DCDKuuDgqt/a/lIaUUpRoFUsyaBZHQKV0KbxVhkR1fZQoaAZoCWgPQwiKx0W1iGj6v5SGlFKUaBVLMmgWR0CldbuyNXHSdX2UKGgGaAloD0MIy7+WV643+b+UhpRSlGgVSzJoFkdApXWCGN70F3V9lChoBmgJaA9DCH9qvHSTmPS/lIaUUpRoFUsyaBZHQKV1SJl8PWh1fZQoaAZoCWgPQwjRIAVPIRfwv5SGlFKUaBVLMmgWR0CldQ83++/QdX2UKGgGaAloD0MIsYaL3NNV6L+UhpRSlGgVSzJoFkdApXafznRsuXV9lChoBmgJaA9DCNmTwOYcvOq/lIaUUpRoFUsyaBZHQKV2ZlRP4211fZQoaAZoCWgPQwjpSC7/Ib32v5SGlFKUaBVLMmgWR0Cldiy/sVtXdX2UKGgGaAloD0MIZoS3ByGg6r+UhpRSlGgVSzJoFkdApXXzM/yGz3V9lChoBmgJaA9DCIvAWN/A5AHAlIaUUpRoFUsyaBZHQKV3hfek56t1fZQoaAZoCWgPQwj1geSdQzkCwJSGlFKUaBVLMmgWR0Cld0xe9i+ddX2UKGgGaAloD0MIcCh8tg7O9b+UhpRSlGgVSzJoFkdApXcS7VawEHV9lChoBmgJaA9DCBCxwcJJ2vO/lIaUUpRoFUsyaBZHQKV22VpsXSB1fZQoaAZoCWgPQwj7IwwDlhz2v5SGlFKUaBVLMmgWR0CleGxFAmiQdX2UKGgGaAloD0MIpFNXPsvz77+UhpRSlGgVSzJoFkdApXgyxkd3jnV9lChoBmgJaA9DCDXwoxr2e+W/lIaUUpRoFUsyaBZHQKV3+S6DoQp1fZQoaAZoCWgPQwgbR6zFp0Dzv5SGlFKUaBVLMmgWR0Cld7+6Zpi7dX2UKGgGaAloD0MITfVk/tH38L+UhpRSlGgVSzJoFkdApXlL3oLXtnV9lChoBmgJaA9DCBKlvcEXJum/lIaUUpRoFUsyaBZHQKV5EixFAml1fZQoaAZoCWgPQwhVoBaDh2n+v5SGlFKUaBVLMmgWR0CleNiTdLxqdX2UKGgGaAloD0MIY0fjUL8L+b+UhpRSlGgVSzJoFkdApXifC2tuDXV9lChoBmgJaA9DCNl78UV7PAHAlIaUUpRoFUsyaBZHQKV6J+irT6V1fZQoaAZoCWgPQwiWsgxxrMv+v5SGlFKUaBVLMmgWR0Clee49ovi+dX2UKGgGaAloD0MIVrq7zobcAsCUhpRSlGgVSzJoFkdApXm0sasIV3V9lChoBmgJaA9DCOLNGryvyvW/lIaUUpRoFUsyaBZHQKV5exTsIE91fZQoaAZoCWgPQwg65jxjX7L5v5SGlFKUaBVLMmgWR0Clewgmqo60dX2UKGgGaAloD0MIMxr5vOKpA8CUhpRSlGgVSzJoFkdApXrOfqX4TXV9lChoBmgJaA9DCGx55XrbjPq/lIaUUpRoFUsyaBZHQKV6lQdjoZB1fZQoaAZoCWgPQwiASL99HbgGwJSGlFKUaBVLMmgWR0ClelvUrkKedX2UKGgGaAloD0MIwhcmUwUDA8CUhpRSlGgVSzJoFkdApXvf+S8rZ3V9lChoBmgJaA9DCNvgRPRriwLAlIaUUpRoFUsyaBZHQKV7pnJ1aGJ1fZQoaAZoCWgPQwiygt+GGK/sv5SGlFKUaBVLMmgWR0Cle2z7EYO2dX2UKGgGaAloD0MIQ3QIHAmUBcCUhpRSlGgVSzJoFkdApXszeO4oZ3V9lChoBmgJaA9DCGXIsfUMIfG/lIaUUpRoFUsyaBZHQKV8vg2Ifr91fZQoaAZoCWgPQwjgnXx6bGsBwJSGlFKUaBVLMmgWR0ClfIS2Yv38dX2UKGgGaAloD0MIZ2SQuwjT67+UhpRSlGgVSzJoFkdApXxLfk3juXV9lChoBmgJaA9DCEq4kEdwI+y/lIaUUpRoFUsyaBZHQKV8Ee8PFvR1fZQoaAZoCWgPQwimtz8XDZnzv5SGlFKUaBVLMmgWR0ClfZhWHUMHdX2UKGgGaAloD0MIICQLmMBtA8CUhpRSlGgVSzJoFkdApX1eqNp/PXV9lChoBmgJaA9DCOsdboeGxei/lIaUUpRoFUsyaBZHQKV9JSk0rLB1fZQoaAZoCWgPQwhSRlwAGqXyv5SGlFKUaBVLMmgWR0ClfOuzposadX2UKGgGaAloD0MIox8Np8zN9r+UhpRSlGgVSzJoFkdApX5ye7L+xXV9lChoBmgJaA9DCNZvJqYLseu/lIaUUpRoFUsyaBZHQKV+OPbwjMV1fZQoaAZoCWgPQwiBBMWPMXftv5SGlFKUaBVLMmgWR0Clff93B55adX2UKGgGaAloD0MI/DbEeM0r9L+UhpRSlGgVSzJoFkdApX3F9Wp6yHV9lChoBmgJaA9DCNXt7CsPEgPAlIaUUpRoFUsyaBZHQKV/UXpnpSt1fZQoaAZoCWgPQwiyEYjX9YsAwJSGlFKUaBVLMmgWR0Clfxf/NqxkdX2UKGgGaAloD0MIprbUQV6P7L+UhpRSlGgVSzJoFkdApX7ehAWznnV9lChoBmgJaA9DCICcMGE0q/a/lIaUUpRoFUsyaBZHQKV+pOcDr7h1fZQoaAZoCWgPQwgZ5C7CFKXxv5SGlFKUaBVLMmgWR0ClgCU21lXjdX2UKGgGaAloD0MIP1OvWwTG9r+UhpRSlGgVSzJoFkdApX/rk2gnMXV9lChoBmgJaA9DCMxiYvNx7fG/lIaUUpRoFUsyaBZHQKV/shf0Eox1fZQoaAZoCWgPQwhU/N8RFar5v5SGlFKUaBVLMmgWR0Clf3iliz9kdX2UKGgGaAloD0MI+z2xTpWv+L+UhpRSlGgVSzJoFkdApYEAOhCdBnV9lChoBmgJaA9DCA+Yh0z5sALAlIaUUpRoFUsyaBZHQKWAxp/PPcB1fZQoaAZoCWgPQwjKNJpcjIEAwJSGlFKUaBVLMmgWR0ClgI1NYbKidX2UKGgGaAloD0MIhnE3iNYK9r+UhpRSlGgVSzJoFkdApYBUCq6vq3V9lChoBmgJaA9DCG/x8J4DS+2/lIaUUpRoFUsyaBZHQKWB3B7eEZl1fZQoaAZoCWgPQwiSJXMs7+rxv5SGlFKUaBVLMmgWR0ClgaKHwgDBdX2UKGgGaAloD0MIKbSs+8fCBMCUhpRSlGgVSzJoFkdApYFo8uBczXV9lChoBmgJaA9DCLCMDd3sbwPAlIaUUpRoFUsyaBZHQKWBL1kDp1R1fZQoaAZoCWgPQwhbmIV2TrP8v5SGlFKUaBVLMmgWR0ClgtVschkidX2UKGgGaAloD0MIwY9q2O+J8b+UhpRSlGgVSzJoFkdApYKb2HtWuHV9lChoBmgJaA9DCIUmiSXl7u2/lIaUUpRoFUsyaBZHQKWCYom5UcZ1fZQoaAZoCWgPQwj8xteeWRL/v5SGlFKUaBVLMmgWR0ClginL7oB8dX2UKGgGaAloD0MIBtUGJ6Lf67+UhpRSlGgVSzJoFkdApYOyvNeMQ3V9lChoBmgJaA9DCF3Cobd4+PW/lIaUUpRoFUsyaBZHQKWDeR28qWl1fZQoaAZoCWgPQwitFW2Oc5v4v5SGlFKUaBVLMmgWR0Clgz+iBXjmdX2UKGgGaAloD0MI98ySADU1/L+UhpRSlGgVSzJoFkdApYMGFlCkXXV9lChoBmgJaA9DCDcz+tFwSvi/lIaUUpRoFUsyaBZHQKWEkpEx7At1fZQoaAZoCWgPQwggKLfte9T2v5SGlFKUaBVLMmgWR0ClhFlK9PDYdX2UKGgGaAloD0MIbCOe7GZG+7+UhpRSlGgVSzJoFkdApYQfvYvnKXV9lChoBmgJaA9DCOauJeSDnu2/lIaUUpRoFUsyaBZHQKWD5j0+TvB1fZQoaAZoCWgPQwglPneC/Zf+v5SGlFKUaBVLMmgWR0ClhdRYaHbidX2UKGgGaAloD0MIb9dLUwRYB8CUhpRSlGgVSzJoFkdApYWbTrmhd3V9lChoBmgJaA9DCHWOAdnrXfG/lIaUUpRoFUsyaBZHQKWFYk1Mue11fZQoaAZoCWgPQwif508b1Wnrv5SGlFKUaBVLMmgWR0ClhSmu9vjwdX2UKGgGaAloD0MIZktWRbiJ97+UhpRSlGgVSzJoFkdApYdF5v99+nV9lChoBmgJaA9DCOT4odKIWfu/lIaUUpRoFUsyaBZHQKWHDNO/L1V1fZQoaAZoCWgPQwiwrgrUYjD3v5SGlFKUaBVLMmgWR0ClhtPsJIDpdX2UKGgGaAloD0MIpz/7kSLyAMCUhpRSlGgVSzJoFkdApYabBfrrxHV9lChoBmgJaA9DCG/0MR8QaPW/lIaUUpRoFUsyaBZHQKWIuoegctJ1fZQoaAZoCWgPQwjKp8e2DLj/v5SGlFKUaBVLMmgWR0CliIGZmZmadX2UKGgGaAloD0MIvTjx1Y4i8b+UhpRSlGgVSzJoFkdApYhIyM1jzHV9lChoBmgJaA9DCL1TAfc8//m/lIaUUpRoFUsyaBZHQKWID/XoTwl1fZQoaAZoCWgPQwjBG9KowCkHwJSGlFKUaBVLMmgWR0ClijN/WlMzdX2UKGgGaAloD0MI641aYfre+b+UhpRSlGgVSzJoFkdApYn64nWrfnV9lChoBmgJaA9DCKJinL8JhQHAlIaUUpRoFUsyaBZHQKWJwhOgxrV1fZQoaAZoCWgPQwjzyB8MPHf2v5SGlFKUaBVLMmgWR0CliYmzByjpdX2UKGgGaAloD0MI5s+3BUv18b+UhpRSlGgVSzJoFkdApYu6sS00FnV9lChoBmgJaA9DCKmieJW1jQLAlIaUUpRoFUsyaBZHQKWLgY/FBIF1fZQoaAZoCWgPQwivtIzUeyoAwJSGlFKUaBVLMmgWR0Cli0ikGiYcdX2UKGgGaAloD0MI3V7SGK2j97+UhpRSlGgVSzJoFkdApYsPqs2ehHV9lChoBmgJaA9DCJ/jo8UZw/C/lIaUUpRoFUsyaBZHQKWNMtRvWH11fZQoaAZoCWgPQwgqAwe0dMXzv5SGlFKUaBVLMmgWR0CljPo11nuidX2UKGgGaAloD0MIECOERxtH97+UhpRSlGgVSzJoFkdApYzBLK3d9HV9lChoBmgJaA9DCLZmKy/5H/m/lIaUUpRoFUsyaBZHQKWMiKVpsXV1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd9dc829512a601a9e8d9263df084b3aa8caef1bff8926cd0d7277afae649cd9
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8abf24418a406f7a9ab57908ed589330097bfcbfc42173151ae67fbe9fcdbe5d
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd9b9b82440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd9b9b85440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686129912197728107, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYN3nPj+4ezxWlQc/YN3nPj+4ezxWlQc/YN3nPj+4ezxWlQc/YN3nPj+4ezxWlQc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMj7Cv8Siwz/5d2e/jKiVva/7KL72KnC+FTwmvwYh0z8ASru+PmlnvRrtuz+tnia/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABg3ec+P7h7PFaVBz8mlm+3vbvqOqZJUrtg3ec+P7h7PFaVBz8mlm+3vbvqOqZJUrtg3ec+P7h7PFaVBz8mlm+3vbvqOqZJUrtg3ec+P7h7PFaVBz8mlm+3vbvqOqZJUruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.45286083 0.01536375 0.52962244]\n [0.45286083 0.01536375 0.52962244]\n [0.45286083 0.01536375 0.52962244]\n [0.45286083 0.01536375 0.52962244]]", "desired_goal": "[[-1.517523 1.5284047 -0.9041744 ]\n [-0.07307538 -0.1650226 -0.23453888]\n [-0.6493543 1.6494453 -0.36579895]\n [-0.05649685 1.4681733 -0.6508587 ]]", "observation": "[[ 4.5286083e-01 1.5363752e-02 5.2962244e-01 -1.4280469e-05\n 1.7908734e-03 -3.2087355e-03]\n [ 4.5286083e-01 1.5363752e-02 5.2962244e-01 -1.4280469e-05\n 1.7908734e-03 -3.2087355e-03]\n [ 4.5286083e-01 1.5363752e-02 5.2962244e-01 -1.4280469e-05\n 1.7908734e-03 -3.2087355e-03]\n [ 4.5286083e-01 1.5363752e-02 5.2962244e-01 -1.4280469e-05\n 1.7908734e-03 -3.2087355e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAax28vKf4yb3Ss40+j+blPV0/ib0FbEQ+5l3avXg+qL0YzRg+a4gWvplEsz1ZAe49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02296325 -0.0986188 0.27676255]\n [ 0.11225616 -0.06701539 0.19181831]\n [-0.10662441 -0.0821504 0.14921987]\n [-0.14700477 0.08753318 0.11621351]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgh/VsN+T9L+UhpRSlIwBbJRLMowBdJRHQKV01R8+ial1fZQoaAZoCWgPQwhuwVJdwMv+v5SGlFKUaBVLMmgWR0CldJtuLrHEdX2UKGgGaAloD0MIv3/z4sQX+r+UhpRSlGgVSzJoFkdApXRiZKFqSHV9lChoBmgJaA9DCDKuuDgqt/a/lIaUUpRoFUsyaBZHQKV0KbxVhkR1fZQoaAZoCWgPQwiKx0W1iGj6v5SGlFKUaBVLMmgWR0CldbuyNXHSdX2UKGgGaAloD0MIy7+WV643+b+UhpRSlGgVSzJoFkdApXWCGN70F3V9lChoBmgJaA9DCH9qvHSTmPS/lIaUUpRoFUsyaBZHQKV1SJl8PWh1fZQoaAZoCWgPQwjRIAVPIRfwv5SGlFKUaBVLMmgWR0CldQ83++/QdX2UKGgGaAloD0MIsYaL3NNV6L+UhpRSlGgVSzJoFkdApXafznRsuXV9lChoBmgJaA9DCNmTwOYcvOq/lIaUUpRoFUsyaBZHQKV2ZlRP4211fZQoaAZoCWgPQwjpSC7/Ib32v5SGlFKUaBVLMmgWR0Cldiy/sVtXdX2UKGgGaAloD0MIZoS3ByGg6r+UhpRSlGgVSzJoFkdApXXzM/yGz3V9lChoBmgJaA9DCIvAWN/A5AHAlIaUUpRoFUsyaBZHQKV3hfek56t1fZQoaAZoCWgPQwj1geSdQzkCwJSGlFKUaBVLMmgWR0Cld0xe9i+ddX2UKGgGaAloD0MIcCh8tg7O9b+UhpRSlGgVSzJoFkdApXcS7VawEHV9lChoBmgJaA9DCBCxwcJJ2vO/lIaUUpRoFUsyaBZHQKV22VpsXSB1fZQoaAZoCWgPQwj7IwwDlhz2v5SGlFKUaBVLMmgWR0CleGxFAmiQdX2UKGgGaAloD0MIpFNXPsvz77+UhpRSlGgVSzJoFkdApXgyxkd3jnV9lChoBmgJaA9DCDXwoxr2e+W/lIaUUpRoFUsyaBZHQKV3+S6DoQp1fZQoaAZoCWgPQwgbR6zFp0Dzv5SGlFKUaBVLMmgWR0Cld7+6Zpi7dX2UKGgGaAloD0MITfVk/tH38L+UhpRSlGgVSzJoFkdApXlL3oLXtnV9lChoBmgJaA9DCBKlvcEXJum/lIaUUpRoFUsyaBZHQKV5EixFAml1fZQoaAZoCWgPQwhVoBaDh2n+v5SGlFKUaBVLMmgWR0CleNiTdLxqdX2UKGgGaAloD0MIY0fjUL8L+b+UhpRSlGgVSzJoFkdApXifC2tuDXV9lChoBmgJaA9DCNl78UV7PAHAlIaUUpRoFUsyaBZHQKV6J+irT6V1fZQoaAZoCWgPQwiWsgxxrMv+v5SGlFKUaBVLMmgWR0Clee49ovi+dX2UKGgGaAloD0MIVrq7zobcAsCUhpRSlGgVSzJoFkdApXm0sasIV3V9lChoBmgJaA9DCOLNGryvyvW/lIaUUpRoFUsyaBZHQKV5exTsIE91fZQoaAZoCWgPQwg65jxjX7L5v5SGlFKUaBVLMmgWR0Clewgmqo60dX2UKGgGaAloD0MIMxr5vOKpA8CUhpRSlGgVSzJoFkdApXrOfqX4TXV9lChoBmgJaA9DCGx55XrbjPq/lIaUUpRoFUsyaBZHQKV6lQdjoZB1fZQoaAZoCWgPQwiASL99HbgGwJSGlFKUaBVLMmgWR0ClelvUrkKedX2UKGgGaAloD0MIwhcmUwUDA8CUhpRSlGgVSzJoFkdApXvf+S8rZ3V9lChoBmgJaA9DCNvgRPRriwLAlIaUUpRoFUsyaBZHQKV7pnJ1aGJ1fZQoaAZoCWgPQwiygt+GGK/sv5SGlFKUaBVLMmgWR0Cle2z7EYO2dX2UKGgGaAloD0MIQ3QIHAmUBcCUhpRSlGgVSzJoFkdApXszeO4oZ3V9lChoBmgJaA9DCGXIsfUMIfG/lIaUUpRoFUsyaBZHQKV8vg2Ifr91fZQoaAZoCWgPQwjgnXx6bGsBwJSGlFKUaBVLMmgWR0ClfIS2Yv38dX2UKGgGaAloD0MIZ2SQuwjT67+UhpRSlGgVSzJoFkdApXxLfk3juXV9lChoBmgJaA9DCEq4kEdwI+y/lIaUUpRoFUsyaBZHQKV8Ee8PFvR1fZQoaAZoCWgPQwimtz8XDZnzv5SGlFKUaBVLMmgWR0ClfZhWHUMHdX2UKGgGaAloD0MIICQLmMBtA8CUhpRSlGgVSzJoFkdApX1eqNp/PXV9lChoBmgJaA9DCOsdboeGxei/lIaUUpRoFUsyaBZHQKV9JSk0rLB1fZQoaAZoCWgPQwhSRlwAGqXyv5SGlFKUaBVLMmgWR0ClfOuzposadX2UKGgGaAloD0MIox8Np8zN9r+UhpRSlGgVSzJoFkdApX5ye7L+xXV9lChoBmgJaA9DCNZvJqYLseu/lIaUUpRoFUsyaBZHQKV+OPbwjMV1fZQoaAZoCWgPQwiBBMWPMXftv5SGlFKUaBVLMmgWR0Clff93B55adX2UKGgGaAloD0MI/DbEeM0r9L+UhpRSlGgVSzJoFkdApX3F9Wp6yHV9lChoBmgJaA9DCNXt7CsPEgPAlIaUUpRoFUsyaBZHQKV/UXpnpSt1fZQoaAZoCWgPQwiyEYjX9YsAwJSGlFKUaBVLMmgWR0Clfxf/NqxkdX2UKGgGaAloD0MIprbUQV6P7L+UhpRSlGgVSzJoFkdApX7ehAWznnV9lChoBmgJaA9DCICcMGE0q/a/lIaUUpRoFUsyaBZHQKV+pOcDr7h1fZQoaAZoCWgPQwgZ5C7CFKXxv5SGlFKUaBVLMmgWR0ClgCU21lXjdX2UKGgGaAloD0MIP1OvWwTG9r+UhpRSlGgVSzJoFkdApX/rk2gnMXV9lChoBmgJaA9DCMxiYvNx7fG/lIaUUpRoFUsyaBZHQKV/shf0Eox1fZQoaAZoCWgPQwhU/N8RFar5v5SGlFKUaBVLMmgWR0Clf3iliz9kdX2UKGgGaAloD0MI+z2xTpWv+L+UhpRSlGgVSzJoFkdApYEAOhCdBnV9lChoBmgJaA9DCA+Yh0z5sALAlIaUUpRoFUsyaBZHQKWAxp/PPcB1fZQoaAZoCWgPQwjKNJpcjIEAwJSGlFKUaBVLMmgWR0ClgI1NYbKidX2UKGgGaAloD0MIhnE3iNYK9r+UhpRSlGgVSzJoFkdApYBUCq6vq3V9lChoBmgJaA9DCG/x8J4DS+2/lIaUUpRoFUsyaBZHQKWB3B7eEZl1fZQoaAZoCWgPQwiSJXMs7+rxv5SGlFKUaBVLMmgWR0ClgaKHwgDBdX2UKGgGaAloD0MIKbSs+8fCBMCUhpRSlGgVSzJoFkdApYFo8uBczXV9lChoBmgJaA9DCLCMDd3sbwPAlIaUUpRoFUsyaBZHQKWBL1kDp1R1fZQoaAZoCWgPQwhbmIV2TrP8v5SGlFKUaBVLMmgWR0ClgtVschkidX2UKGgGaAloD0MIwY9q2O+J8b+UhpRSlGgVSzJoFkdApYKb2HtWuHV9lChoBmgJaA9DCIUmiSXl7u2/lIaUUpRoFUsyaBZHQKWCYom5UcZ1fZQoaAZoCWgPQwj8xteeWRL/v5SGlFKUaBVLMmgWR0ClginL7oB8dX2UKGgGaAloD0MIBtUGJ6Lf67+UhpRSlGgVSzJoFkdApYOyvNeMQ3V9lChoBmgJaA9DCF3Cobd4+PW/lIaUUpRoFUsyaBZHQKWDeR28qWl1fZQoaAZoCWgPQwitFW2Oc5v4v5SGlFKUaBVLMmgWR0Clgz+iBXjmdX2UKGgGaAloD0MI98ySADU1/L+UhpRSlGgVSzJoFkdApYMGFlCkXXV9lChoBmgJaA9DCDcz+tFwSvi/lIaUUpRoFUsyaBZHQKWEkpEx7At1fZQoaAZoCWgPQwggKLfte9T2v5SGlFKUaBVLMmgWR0ClhFlK9PDYdX2UKGgGaAloD0MIbCOe7GZG+7+UhpRSlGgVSzJoFkdApYQfvYvnKXV9lChoBmgJaA9DCOauJeSDnu2/lIaUUpRoFUsyaBZHQKWD5j0+TvB1fZQoaAZoCWgPQwglPneC/Zf+v5SGlFKUaBVLMmgWR0ClhdRYaHbidX2UKGgGaAloD0MIb9dLUwRYB8CUhpRSlGgVSzJoFkdApYWbTrmhd3V9lChoBmgJaA9DCHWOAdnrXfG/lIaUUpRoFUsyaBZHQKWFYk1Mue11fZQoaAZoCWgPQwif508b1Wnrv5SGlFKUaBVLMmgWR0ClhSmu9vjwdX2UKGgGaAloD0MIZktWRbiJ97+UhpRSlGgVSzJoFkdApYdF5v99+nV9lChoBmgJaA9DCOT4odKIWfu/lIaUUpRoFUsyaBZHQKWHDNO/L1V1fZQoaAZoCWgPQwiwrgrUYjD3v5SGlFKUaBVLMmgWR0ClhtPsJIDpdX2UKGgGaAloD0MIpz/7kSLyAMCUhpRSlGgVSzJoFkdApYabBfrrxHV9lChoBmgJaA9DCG/0MR8QaPW/lIaUUpRoFUsyaBZHQKWIuoegctJ1fZQoaAZoCWgPQwjKp8e2DLj/v5SGlFKUaBVLMmgWR0CliIGZmZmadX2UKGgGaAloD0MIvTjx1Y4i8b+UhpRSlGgVSzJoFkdApYhIyM1jzHV9lChoBmgJaA9DCL1TAfc8//m/lIaUUpRoFUsyaBZHQKWID/XoTwl1fZQoaAZoCWgPQwjBG9KowCkHwJSGlFKUaBVLMmgWR0ClijN/WlMzdX2UKGgGaAloD0MI641aYfre+b+UhpRSlGgVSzJoFkdApYn64nWrfnV9lChoBmgJaA9DCKJinL8JhQHAlIaUUpRoFUsyaBZHQKWJwhOgxrV1fZQoaAZoCWgPQwjzyB8MPHf2v5SGlFKUaBVLMmgWR0CliYmzByjpdX2UKGgGaAloD0MI5s+3BUv18b+UhpRSlGgVSzJoFkdApYu6sS00FnV9lChoBmgJaA9DCKmieJW1jQLAlIaUUpRoFUsyaBZHQKWLgY/FBIF1fZQoaAZoCWgPQwivtIzUeyoAwJSGlFKUaBVLMmgWR0Cli0ikGiYcdX2UKGgGaAloD0MI3V7SGK2j97+UhpRSlGgVSzJoFkdApYsPqs2ehHV9lChoBmgJaA9DCJ/jo8UZw/C/lIaUUpRoFUsyaBZHQKWNMtRvWH11fZQoaAZoCWgPQwgqAwe0dMXzv5SGlFKUaBVLMmgWR0CljPo11nuidX2UKGgGaAloD0MIECOERxtH97+UhpRSlGgVSzJoFkdApYzBLK3d9HV9lChoBmgJaA9DCLZmKy/5H/m/lIaUUpRoFUsyaBZHQKWMiKVpsXV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (733 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.8656079650158062, "std_reward": 0.8126938304047275, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-07T10:11:13.472809"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83d78847771bef17383f89e2469ba29978b595345e64fd2e54d6d55f48f340a0
3
+ size 2387