Ammar-alhaj-ali commited on
Commit
fc7f00f
·
1 Parent(s): 700dc83

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -7
README.md CHANGED
@@ -3,25 +3,23 @@ language:
3
  - ar
4
  widget:
5
  - text: "ما شفت هدا العنوان هون"
6
- example_title: "مثال1"
7
  - text: "مبقدرش احافظ علي المستوى الدراسي بتاعي"
8
- example_title: "مثال2"
9
  - text: "منين تطلع بهاي السوالف كل يوم"
10
- example_title: "مثال3"
11
  tags:
12
  - text classification
13
  ---
14
 
15
-
 
16
  **arabic-MARBERT-dialect-identification-city Model** is a dialect identification model that was built by fine-tuning the [MARBERT](https://huggingface.co/UBC-NLP/MARBERT) model. For the fine-tuning, I used [MADAR Corpus 26 dataset](https://camel.abudhabi.nyu.edu/madar-shared-task-2019/), which includes 26 labels(cities).
17
 
18
-
19
  #### How to use
20
  To use the model with a transformers pipeline:
21
  ```python
22
  >>> from transformers import pipeline
23
- >>> model= pipeline('text-classification', model='Ammar-alhaj-ali/arabic-MARBERT-dialect-identification-city')
24
  >>> sentences = ['ناطرين البرنامج', 'اكلنا هوا بهل شروة']
25
  >>> model(sentences)
26
  [{'label': 'Beirut', 'score': 0.9731963276863098},
27
- {'label': 'Aleppo', 'score': 0.4592577815055847}]
 
 
3
  - ar
4
  widget:
5
  - text: "ما شفت هدا العنوان هون"
 
6
  - text: "مبقدرش احافظ علي المستوى الدراسي بتاعي"
 
7
  - text: "منين تطلع بهاي السوالف كل يوم"
 
8
  tags:
9
  - text classification
10
  ---
11
 
12
+ # Arabic-MARBERT-dialect-Identification-City Model
13
+ ## Model description
14
  **arabic-MARBERT-dialect-identification-city Model** is a dialect identification model that was built by fine-tuning the [MARBERT](https://huggingface.co/UBC-NLP/MARBERT) model. For the fine-tuning, I used [MADAR Corpus 26 dataset](https://camel.abudhabi.nyu.edu/madar-shared-task-2019/), which includes 26 labels(cities).
15
 
 
16
  #### How to use
17
  To use the model with a transformers pipeline:
18
  ```python
19
  >>> from transformers import pipeline
20
+ >>> did = pipeline('text-classification', model='Ammar-alhaj-ali/arabic-MARBERT-dialect-identification-city')
21
  >>> sentences = ['ناطرين البرنامج', 'اكلنا هوا بهل شروة']
22
  >>> model(sentences)
23
  [{'label': 'Beirut', 'score': 0.9731963276863098},
24
+ {'label': 'Aleppo', 'score': 0.4592577815055847}]
25
+