Ammar-alhaj-ali
commited on
Commit
·
e4fb2f6
1
Parent(s):
e96c6be
Update README.md
Browse files
README.md
CHANGED
@@ -21,16 +21,16 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
-
value: 0.
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
-
value: 0.
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
-
value: 0.
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -40,86 +40,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
40 |
|
41 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
-
- Loss: 1.
|
44 |
-
- Precision: 0.
|
45 |
-
- Recall: 0.
|
46 |
-
- F1: 0.
|
47 |
-
- Accuracy: 0.
|
48 |
|
49 |
-
## Model description
|
50 |
|
51 |
-
More information needed
|
52 |
-
|
53 |
-
## Intended uses & limitations
|
54 |
-
|
55 |
-
More information needed
|
56 |
-
|
57 |
-
## Training and evaluation data
|
58 |
-
|
59 |
-
More information needed
|
60 |
-
|
61 |
-
## Training procedure
|
62 |
-
|
63 |
-
### Training hyperparameters
|
64 |
-
|
65 |
-
The following hyperparameters were used during training:
|
66 |
-
- learning_rate: 1e-05
|
67 |
-
- train_batch_size: 16
|
68 |
-
- eval_batch_size: 16
|
69 |
-
- seed: 42
|
70 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
-
- lr_scheduler_type: linear
|
72 |
-
- training_steps: 1000
|
73 |
-
|
74 |
-
### Training results
|
75 |
-
|
76 |
-
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
-
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
-
| No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 |
|
79 |
-
| No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 |
|
80 |
-
| No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 |
|
81 |
-
| No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 |
|
82 |
-
| 0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 |
|
83 |
-
| 0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 |
|
84 |
-
| 0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 |
|
85 |
-
| 0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 |
|
86 |
-
| 0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 |
|
87 |
-
| 0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 |
|
88 |
-
| No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 |
|
89 |
-
| No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 |
|
90 |
-
| No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 |
|
91 |
-
| No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 |
|
92 |
-
| 0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 |
|
93 |
-
| 0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 |
|
94 |
-
| 0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 |
|
95 |
-
| 0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 |
|
96 |
-
| 0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 |
|
97 |
-
| 0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 |
|
98 |
-
|
99 |
-
|
100 |
-
[4000/4000 20:34, Epoch 53/54]
|
101 |
-
Step Training Loss Validation Loss Precision Recall F1 Accuracy
|
102 |
-
250 No log 0.435449 0.854588 0.902136 0.877719 0.835968
|
103 |
-
500 0.505800 0.611310 0.869822 0.876304 0.873051 0.839177
|
104 |
-
750 0.505800 0.635022 0.879886 0.917039 0.898078 0.853085
|
105 |
-
1000 0.097000 0.765935 0.900818 0.929459 0.914914 0.860097
|
106 |
-
1250 0.097000 0.887739 0.885533 0.903130 0.894245 0.842625
|
107 |
-
1500 0.029900 0.948754 0.898018 0.923000 0.910338 0.843575
|
108 |
-
1750 0.029900 1.102811 0.900433 0.929955 0.914956 0.840128
|
109 |
-
2000 0.009700 1.039040 0.901415 0.917536 0.909404 0.852728
|
110 |
-
2250 0.009700 1.044235 0.904716 0.924491 0.914496 0.849519
|
111 |
-
2500 0.002500 1.013194 0.913086 0.918530 0.915800 0.849637
|
112 |
-
2750 0.002500 1.017520 0.908605 0.928465 0.918428 0.854986
|
113 |
-
3000 0.000900 1.029559 0.914216 0.926478 0.920306 0.859384
|
114 |
-
3250 0.000900 1.038318 0.918177 0.930949 0.924519 0.859979
|
115 |
-
3500 0.000800 1.045578 0.914216 0.926478 0.920306 0.858552
|
116 |
-
3750 0.000800 1.040568 0.913894 0.927968 0.920877 0.858433
|
117 |
-
4000 0.000700 1.041146 0.913894 0.927968 0.920877 0.8585528552
|
118 |
-
|
119 |
-
|
120 |
-
### Framework versions
|
121 |
-
|
122 |
-
- Transformers 4.19.0.dev0
|
123 |
-
- Pytorch 1.11.0+cu113
|
124 |
-
- Datasets 2.0.0
|
125 |
-
- Tokenizers 0.11.6
|
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
+
value: 0.918177
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
+
value: 0.930949
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
+
value: 0.924519
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
+
value: 0.859979
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 1.038318
|
44 |
+
- Precision: 0.918177
|
45 |
+
- Recall: 0.930949
|
46 |
+
- F1: 0.924519
|
47 |
+
- Accuracy: 0.859979
|
48 |
|
|
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|