|
import os
|
|
import json
|
|
import pandas as pd
|
|
|
|
|
|
class DAGMSolver(object):
|
|
CLSNAMES = [
|
|
'Class1','Class2','Class3','Class4','Class5','Class6','Class7','Class8','Class9','Class10'
|
|
]
|
|
|
|
def __init__(self, root='data/mvtec'):
|
|
self.root = root
|
|
self.meta_path = f'{root}/meta.json'
|
|
|
|
def run(self):
|
|
info = dict(Train={}, Test={})
|
|
anomaly_samples = 0
|
|
normal_samples = 0
|
|
for cls_name in self.CLSNAMES:
|
|
cls_dir = f'{self.root}/{cls_name}'
|
|
for phase in ['Train', 'Test']:
|
|
cls_info = []
|
|
x, y, mask_names_none= [], [], []
|
|
img_dir = os.listdir(f'{cls_dir}/{phase}')
|
|
|
|
mask_names = os.listdir(f'{cls_dir}/{phase}/Label')
|
|
|
|
img_fpath_list = sorted([f
|
|
for f in img_dir
|
|
if f.endswith('.PNG')])
|
|
gt_fpath_list = sorted([f
|
|
for f in mask_names
|
|
if f.endswith('.PNG')])
|
|
|
|
img_exclude_list = [f.split("_")[0] + ".PNG" for f in gt_fpath_list]
|
|
|
|
img_normal_fpath_list = list(set(img_fpath_list) - set(img_exclude_list))
|
|
|
|
x.extend(img_normal_fpath_list + img_exclude_list)
|
|
|
|
y.extend([0] * len(img_normal_fpath_list) + [1]* len(img_exclude_list))
|
|
|
|
mask_names_none.extend([None] * len(img_normal_fpath_list) + gt_fpath_list)
|
|
|
|
for idx, img_name in enumerate(x):
|
|
info_img = dict(
|
|
img_path=f'{cls_name}/{phase}/{img_name}',
|
|
mask_path=f'{cls_name}/{phase}/Label/{mask_names_none[idx]}' if mask_names_none[idx] != None else '',
|
|
cls_name=cls_name,
|
|
specie_name='',
|
|
anomaly=1 if y[idx] == 1 else 0,
|
|
)
|
|
cls_info.append(info_img)
|
|
if phase == 'Test':
|
|
if y[idx] == 1:
|
|
anomaly_samples = anomaly_samples + 1
|
|
else:
|
|
normal_samples = normal_samples + 1
|
|
info[phase][cls_name] = cls_info
|
|
with open(self.meta_path, 'w') as f:
|
|
f.write(json.dumps(info, indent=4) + "\n")
|
|
print('normal_samples', normal_samples, 'anomaly_samples', anomaly_samples)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
runner = DAGMSolver(root='/remote-home/iot_zhouqihang/data/DAGM_KaggleUpload')
|
|
runner.run()
|
|
|