|
import os
|
|
import json
|
|
import pandas as pd
|
|
|
|
|
|
class ClinicDBSolver(object):
|
|
CLSNAMES = [
|
|
'colon',
|
|
]
|
|
|
|
def __init__(self, root='data/mvtec'):
|
|
self.root = root
|
|
self.meta_path = f'{root}/meta.json'
|
|
|
|
def run(self):
|
|
info = dict(train={}, test={})
|
|
anomaly_samples = 0
|
|
normal_samples = 0
|
|
for cls_name in self.CLSNAMES:
|
|
cls_dir = f'{self.root}'
|
|
for phase in ['test']:
|
|
cls_info = []
|
|
|
|
img_names = os.listdir(f'{cls_dir}/images')
|
|
mask_names = os.listdir(f'{cls_dir}/masks')
|
|
img_names.sort()
|
|
mask_names.sort() if mask_names is not None else None
|
|
for idx, img_name in enumerate(img_names):
|
|
info_img = dict(
|
|
img_path=f'{cls_dir}/images/{img_name}',
|
|
mask_path=f'{cls_dir}/masks/{mask_names[idx]}',
|
|
cls_name=cls_name,
|
|
specie_name='',
|
|
anomaly=1
|
|
)
|
|
cls_info.append(info_img)
|
|
if phase == 'test':
|
|
if True:
|
|
anomaly_samples = anomaly_samples + 1
|
|
else:
|
|
normal_samples = normal_samples + 1
|
|
info[phase][cls_name] = cls_info
|
|
with open(self.meta_path, 'w') as f:
|
|
f.write(json.dumps(info, indent=4) + "\n")
|
|
print('normal_samples', normal_samples, 'anomaly_samples', anomaly_samples)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
runner = ClinicDBSolver(root='/remote-home/iot_zhouqihang/data/medical/Kvasir')
|
|
runner.run()
|
|
|