|
import torchvision.transforms as transforms |
|
|
|
from AnomalyCLIP_lib.transform import image_transform |
|
from AnomalyCLIP_lib.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD |
|
|
|
|
|
|
|
def normalize(pred, max_value=None, min_value=None): |
|
if max_value is None or min_value is None: |
|
return (pred - pred.min()) / (pred.max() - pred.min()) |
|
else: |
|
return (pred - min_value) / (max_value - min_value) |
|
|
|
def get_transform(args): |
|
preprocess = image_transform(args.image_size, is_train=False, mean = OPENAI_DATASET_MEAN, std = OPENAI_DATASET_STD) |
|
target_transform = transforms.Compose([ |
|
transforms.Resize((args.image_size, args.image_size)), |
|
transforms.CenterCrop(args.image_size), |
|
transforms.ToTensor() |
|
]) |
|
preprocess.transforms[0] = transforms.Resize(size=(args.image_size, args.image_size), interpolation=transforms.InterpolationMode.BICUBIC, |
|
max_size=None, antialias=None) |
|
preprocess.transforms[1] = transforms.CenterCrop(size=(args.image_size, args.image_size)) |
|
return preprocess, target_transform |
|
|