File size: 1,553 Bytes
8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe 8e27c9d 8c060fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
library_name: transformers
license: other
base_model: nvidia/mit-b1
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b01-finetuned-wrinkle
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b01-finetuned-wrinkle
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the face-wrinkles dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0002
- eval_mean_iou: 0.0
- eval_mean_accuracy: nan
- eval_overall_accuracy: nan
- eval_accuracy_unlabeled: nan
- eval_accuracy_wrinkle: nan
- eval_iou_unlabeled: 0.0
- eval_iou_wrinkle: 0.0
- eval_runtime: 13.0305
- eval_samples_per_second: 10.053
- eval_steps_per_second: 5.065
- epoch: 2.3978
- step: 880
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|