AmelieSchreiber
commited on
Commit
•
63a538f
1
Parent(s):
2248c60
Upload data_processing_v1.ipynb
Browse files- data_processing_v1.ipynb +692 -0
data_processing_v1.ipynb
ADDED
@@ -0,0 +1,692 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"id": "91af3f42-063e-4d5c-ae16-c7c54599d582",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Number of entries with angle brackets: 35\n",
|
14 |
+
"Number of remaining rows: 16460737\n",
|
15 |
+
"Number of distinct protein families: 10258\n"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"name": "stderr",
|
20 |
+
"output_type": "stream",
|
21 |
+
"text": [
|
22 |
+
"100%|██████████| 10258/10258 [00:04<00:00, 2232.02family/s]\n"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"name": "stdout",
|
27 |
+
"output_type": "stream",
|
28 |
+
"text": [
|
29 |
+
"Number of distinct protein families in the test set: 2076\n",
|
30 |
+
"Number of distinct protein families in the train set: 8182\n",
|
31 |
+
"Percentage of families in test set: 0.20237863131214662\n"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"data": {
|
36 |
+
"text/plain": [
|
37 |
+
"(3307395, 13153342)"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
"execution_count": 2,
|
41 |
+
"metadata": {},
|
42 |
+
"output_type": "execute_result"
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"source": [
|
46 |
+
"import pandas as pd\n",
|
47 |
+
"import numpy as np\n",
|
48 |
+
"from tqdm import tqdm\n",
|
49 |
+
"\n",
|
50 |
+
"# Load the dataset\n",
|
51 |
+
"file_path = 'binding_sites_uniprot_16M.tsv'\n",
|
52 |
+
"data = pd.read_csv(file_path, sep='\\t')\n",
|
53 |
+
"\n",
|
54 |
+
"# Display the first few rows of the dataframe\n",
|
55 |
+
"#data.head()\n",
|
56 |
+
"\n",
|
57 |
+
"# Filter out rows with NaN values in the 'Protein families' column\n",
|
58 |
+
"data = data[pd.notna(data['Protein families'])]\n",
|
59 |
+
"\n",
|
60 |
+
"# Display the first few rows of the modified dataframe\n",
|
61 |
+
"#data.head()\n",
|
62 |
+
"\n",
|
63 |
+
"# Group the data by 'Protein families' and get the size of each group\n",
|
64 |
+
"family_sizes = data.groupby('Protein families').size()\n",
|
65 |
+
"\n",
|
66 |
+
"# Create a new column with the size of each family\n",
|
67 |
+
"data['Family size'] = data['Protein families'].map(family_sizes)\n",
|
68 |
+
"\n",
|
69 |
+
"# Sort the data by 'Family size' in descending order and then by 'Protein families'\n",
|
70 |
+
"data_sorted = data.sort_values(by=['Family size', 'Protein families'], ascending=[False, True])\n",
|
71 |
+
"\n",
|
72 |
+
"# Drop the 'Family size' column as it is no longer needed\n",
|
73 |
+
"data_sorted.drop(columns='Family size', inplace=True)\n",
|
74 |
+
"\n",
|
75 |
+
"# Define a function to extract the location from the binding and active site columns\n",
|
76 |
+
"def extract_location(site_info):\n",
|
77 |
+
" if pd.isnull(site_info):\n",
|
78 |
+
" return None\n",
|
79 |
+
" locations = []\n",
|
80 |
+
" for info in site_info.split(';'):\n",
|
81 |
+
" if 'BINDING' in info or 'ACT_SITE' in info:\n",
|
82 |
+
" locations.append(info.split()[1])\n",
|
83 |
+
" return '; '.join(locations)\n",
|
84 |
+
"\n",
|
85 |
+
"# Apply the function to the 'Binding site' and 'Active site' columns to extract the locations\n",
|
86 |
+
"data_sorted['Binding site'] = data_sorted['Binding site'].apply(extract_location)\n",
|
87 |
+
"data_sorted['Active site'] = data_sorted['Active site'].apply(extract_location)\n",
|
88 |
+
"\n",
|
89 |
+
"# Display the first few rows of the modified dataframe\n",
|
90 |
+
"#data_sorted.head()\n",
|
91 |
+
"\n",
|
92 |
+
"# Create a new column that combines the 'Binding site' and 'Active site' columns\n",
|
93 |
+
"data_sorted['Binding-Active site'] = data_sorted['Binding site'].astype(str) + '; ' + data_sorted['Active site'].astype(str)\n",
|
94 |
+
"\n",
|
95 |
+
"# Replace 'nan' values with None\n",
|
96 |
+
"data_sorted['Binding-Active site'] = data_sorted['Binding-Active site'].replace('nan; nan', None)\n",
|
97 |
+
"\n",
|
98 |
+
"# Display the first few rows of the updated dataframe\n",
|
99 |
+
"#data_sorted.head()\n",
|
100 |
+
"\n",
|
101 |
+
"# Find entries in the \"Binding-Active site\" column containing '<' or '>'\n",
|
102 |
+
"entries_with_angle_brackets = data_sorted['Binding-Active site'].str.contains('<|>', na=False)\n",
|
103 |
+
"\n",
|
104 |
+
"# Get the number of such entries\n",
|
105 |
+
"num_entries_with_angle_brackets = entries_with_angle_brackets.sum()\n",
|
106 |
+
"\n",
|
107 |
+
"# Display the number of entries containing '<' or '>'\n",
|
108 |
+
"print(f\"Number of entries with angle brackets: {num_entries_with_angle_brackets}\")\n",
|
109 |
+
"\n",
|
110 |
+
"# Remove all rows where the \"Binding-Active site\" column contains '<' or '>'\n",
|
111 |
+
"data_filtered = data_sorted[~entries_with_angle_brackets]\n",
|
112 |
+
"\n",
|
113 |
+
"# Get the number of remaining rows\n",
|
114 |
+
"num_remaining_rows = data_filtered.shape[0]\n",
|
115 |
+
"\n",
|
116 |
+
"# Display the number of remaining rows\n",
|
117 |
+
"print(f\"Number of remaining rows: {num_remaining_rows}\")\n",
|
118 |
+
"\n",
|
119 |
+
"# Get the number of distinct protein families\n",
|
120 |
+
"num_distinct_families = data_filtered['Protein families'].nunique()\n",
|
121 |
+
"\n",
|
122 |
+
"# Display the number of distinct protein families\n",
|
123 |
+
"print(f\"Number of distinct protein families: {num_distinct_families}\")\n",
|
124 |
+
"\n",
|
125 |
+
"# Define the target number of rows for the test set (approximately 20% of the data)\n",
|
126 |
+
"target_test_rows = int(0.20 * num_remaining_rows)\n",
|
127 |
+
"\n",
|
128 |
+
"# Get unique protein families\n",
|
129 |
+
"unique_families = data_filtered['Protein families'].unique()\n",
|
130 |
+
"\n",
|
131 |
+
"# Shuffle the unique families to randomize the selection\n",
|
132 |
+
"np.random.shuffle(unique_families)\n",
|
133 |
+
"\n",
|
134 |
+
"# Group the data by 'Protein families' to facilitate faster family-wise selection\n",
|
135 |
+
"grouped_data = data_filtered.groupby('Protein families')\n",
|
136 |
+
"\n",
|
137 |
+
"# Initialize variables to keep track of the selected rows for the test and train sets\n",
|
138 |
+
"test_rows = []\n",
|
139 |
+
"current_test_rows = 0\n",
|
140 |
+
"\n",
|
141 |
+
"# Initialize a flag to indicate whether the threshold has been crossed\n",
|
142 |
+
"threshold_crossed = False\n",
|
143 |
+
"\n",
|
144 |
+
"# Initialize a variable to keep track of the previous family\n",
|
145 |
+
"previous_family = None\n",
|
146 |
+
"\n",
|
147 |
+
"# Loop through the shuffled families and add rows to the test set until we reach the target number of rows\n",
|
148 |
+
"for family in tqdm(unique_families, unit=\"family\"):\n",
|
149 |
+
" family_rows = grouped_data.get_group(family).index.tolist()\n",
|
150 |
+
" # If the threshold is not yet crossed, or the family is the same as the previous family, add the family to the test set\n",
|
151 |
+
" if not threshold_crossed or (previous_family == family):\n",
|
152 |
+
" test_rows.extend(family_rows)\n",
|
153 |
+
" current_test_rows += len(family_rows)\n",
|
154 |
+
" previous_family = family # Keep track of the previous family\n",
|
155 |
+
" # Check if the threshold is crossed with the addition of the current family\n",
|
156 |
+
" if current_test_rows >= target_test_rows:\n",
|
157 |
+
" threshold_crossed = True # Set the flag to True once the threshold is crossed\n",
|
158 |
+
"\n",
|
159 |
+
"# Get the indices of the rows for the train set (all rows not in the test set) using set operations for efficiency\n",
|
160 |
+
"train_rows = set(data_filtered.index) - set(test_rows)\n",
|
161 |
+
"\n",
|
162 |
+
"# Create the test and train datasets using loc indexer with list of indices\n",
|
163 |
+
"test_df = data_filtered.loc[list(test_rows)]\n",
|
164 |
+
"train_df = data_filtered.loc[list(train_rows)]\n",
|
165 |
+
"\n",
|
166 |
+
"# Print the number of distinct protein families in the test and train sets\n",
|
167 |
+
"num_test_families = test_df['Protein families'].nunique()\n",
|
168 |
+
"num_train_families = train_df['Protein families'].nunique()\n",
|
169 |
+
"print(f\"Number of distinct protein families in the test set: {num_test_families}\")\n",
|
170 |
+
"print(f\"Number of distinct protein families in the train set: {num_train_families}\")\n",
|
171 |
+
"percentage = num_test_families/(num_test_families+num_train_families)\n",
|
172 |
+
"print(f\"Percentage of families in test set: {percentage}\")\n",
|
173 |
+
"\n",
|
174 |
+
"test_df.shape[0], train_df.shape[0]\n"
|
175 |
+
]
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"cell_type": "code",
|
179 |
+
"execution_count": 3,
|
180 |
+
"id": "772edd92-5137-486a-8a81-8ab7bf51568f",
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [
|
183 |
+
{
|
184 |
+
"name": "stdout",
|
185 |
+
"output_type": "stream",
|
186 |
+
"text": [
|
187 |
+
"Number of common families: 0\n",
|
188 |
+
"No common families between test and train datasets.\n"
|
189 |
+
]
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"source": [
|
193 |
+
"# Get the unique families in the test and train datasets\n",
|
194 |
+
"unique_test_families = set(test_df['Protein families'].unique())\n",
|
195 |
+
"unique_train_families = set(train_df['Protein families'].unique())\n",
|
196 |
+
"\n",
|
197 |
+
"# Find the common families between the test and train datasets\n",
|
198 |
+
"common_families = unique_test_families.intersection(unique_train_families)\n",
|
199 |
+
"\n",
|
200 |
+
"# Output the common families and their count\n",
|
201 |
+
"print(f\"Number of common families: {len(common_families)}\")\n",
|
202 |
+
"if len(common_families) > 0:\n",
|
203 |
+
" print(f\"Common families: {common_families}\")\n",
|
204 |
+
"else:\n",
|
205 |
+
" print(\"No common families between test and train datasets.\")\n"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"cell_type": "code",
|
210 |
+
"execution_count": 4,
|
211 |
+
"id": "bc8825d6-60f8-4029-a4ab-a2317b170d09",
|
212 |
+
"metadata": {},
|
213 |
+
"outputs": [
|
214 |
+
{
|
215 |
+
"name": "stdout",
|
216 |
+
"output_type": "stream",
|
217 |
+
"text": [
|
218 |
+
"Number of test rows with question mark: 0\n",
|
219 |
+
"Number of train rows with question mark: 2\n",
|
220 |
+
"Number of remaining test rows: 3307395\n",
|
221 |
+
"Number of remaining train rows: 13153340\n"
|
222 |
+
]
|
223 |
+
}
|
224 |
+
],
|
225 |
+
"source": [
|
226 |
+
"import re\n",
|
227 |
+
"\n",
|
228 |
+
"# Find rows where the \"Binding-Active site\" column contains the character \"?\", treating \"?\" as a literal character\n",
|
229 |
+
"test_rows_with_question_mark = test_df[test_df['Binding-Active site'].str.contains('\\?', na=False, regex=True)]\n",
|
230 |
+
"train_rows_with_question_mark = train_df[train_df['Binding-Active site'].str.contains('\\?', na=False, regex=True)]\n",
|
231 |
+
"\n",
|
232 |
+
"# Get the number of such rows in both datasets\n",
|
233 |
+
"num_test_rows_with_question_mark = len(test_rows_with_question_mark)\n",
|
234 |
+
"num_train_rows_with_question_mark = len(train_rows_with_question_mark)\n",
|
235 |
+
"\n",
|
236 |
+
"print(f\"Number of test rows with question mark: {num_test_rows_with_question_mark}\")\n",
|
237 |
+
"print(f\"Number of train rows with question mark: {num_train_rows_with_question_mark}\")\n",
|
238 |
+
"\n",
|
239 |
+
"# Delete the rows containing '?' in the \"Binding-Active site\" column\n",
|
240 |
+
"test_df = test_df.drop(test_rows_with_question_mark.index)\n",
|
241 |
+
"train_df = train_df.drop(train_rows_with_question_mark.index)\n",
|
242 |
+
"\n",
|
243 |
+
"# Check the number of remaining rows in both datasets\n",
|
244 |
+
"remaining_test_rows = test_df.shape[0]\n",
|
245 |
+
"remaining_train_rows = train_df.shape[0]\n",
|
246 |
+
"\n",
|
247 |
+
"print(f\"Number of remaining test rows: {remaining_test_rows}\")\n",
|
248 |
+
"print(f\"Number of remaining train rows: {remaining_train_rows}\")\n",
|
249 |
+
"\n",
|
250 |
+
"def expand_ranges(s):\n",
|
251 |
+
" \"\"\"Expand ranges in a string.\"\"\"\n",
|
252 |
+
" return re.sub(r'(\\d+)\\.\\.(\\d+)', lambda m: ', '.join(map(str, range(int(m.group(1)), int(m.group(2))+1))), str(s))\n",
|
253 |
+
"\n",
|
254 |
+
"# Apply the function to expand ranges in the \"Binding-Active site\" column in both datasets\n",
|
255 |
+
"test_df['Binding-Active site'] = test_df['Binding-Active site'].apply(expand_ranges)\n",
|
256 |
+
"train_df['Binding-Active site'] = train_df['Binding-Active site'].apply(expand_ranges)\n"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "code",
|
261 |
+
"execution_count": 5,
|
262 |
+
"id": "d91da865-495a-4c1d-91ed-0ebeff1ecd50",
|
263 |
+
"metadata": {},
|
264 |
+
"outputs": [],
|
265 |
+
"source": [
|
266 |
+
"def convert_to_binary_list(binding_active_str, sequence_len):\n",
|
267 |
+
" \"\"\"Convert a Binding-Active site string to a binary list based on the sequence length.\"\"\"\n",
|
268 |
+
" # Step 2: Create a list of 0s with length equal to the sequence length\n",
|
269 |
+
" binary_list = [0] * sequence_len\n",
|
270 |
+
" \n",
|
271 |
+
" # Step 3: Retrieve the indices and set the corresponding positions to 1\n",
|
272 |
+
" if pd.notna(binding_active_str):\n",
|
273 |
+
" # Get the indices from the binding-active site string\n",
|
274 |
+
" indices = [int(x) - 1 for segment in binding_active_str.split(';') for x in segment.split(',') if x.strip().isdigit()]\n",
|
275 |
+
" for idx in indices:\n",
|
276 |
+
" # Ensure the index is within the valid range\n",
|
277 |
+
" if 0 <= idx < sequence_len:\n",
|
278 |
+
" binary_list[idx] = 1\n",
|
279 |
+
" \n",
|
280 |
+
" # Step 4: Return the binary list\n",
|
281 |
+
" return binary_list\n",
|
282 |
+
"\n",
|
283 |
+
"# Apply the function to both datasets\n",
|
284 |
+
"test_df['Binding-Active site'] = test_df.apply(lambda row: convert_to_binary_list(row['Binding-Active site'], len(row['Sequence'])), axis=1)\n",
|
285 |
+
"train_df['Binding-Active site'] = train_df.apply(lambda row: convert_to_binary_list(row['Binding-Active site'], len(row['Sequence'])), axis=1)\n"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "code",
|
290 |
+
"execution_count": 6,
|
291 |
+
"id": "4cea2656-75eb-4350-b1a6-704c18793473",
|
292 |
+
"metadata": {},
|
293 |
+
"outputs": [
|
294 |
+
{
|
295 |
+
"data": {
|
296 |
+
"text/html": [
|
297 |
+
"<div>\n",
|
298 |
+
"<style scoped>\n",
|
299 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
300 |
+
" vertical-align: middle;\n",
|
301 |
+
" }\n",
|
302 |
+
"\n",
|
303 |
+
" .dataframe tbody tr th {\n",
|
304 |
+
" vertical-align: top;\n",
|
305 |
+
" }\n",
|
306 |
+
"\n",
|
307 |
+
" .dataframe thead th {\n",
|
308 |
+
" text-align: right;\n",
|
309 |
+
" }\n",
|
310 |
+
"</style>\n",
|
311 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
312 |
+
" <thead>\n",
|
313 |
+
" <tr style=\"text-align: right;\">\n",
|
314 |
+
" <th></th>\n",
|
315 |
+
" <th>Entry</th>\n",
|
316 |
+
" <th>Protein families</th>\n",
|
317 |
+
" <th>Binding site</th>\n",
|
318 |
+
" <th>Active site</th>\n",
|
319 |
+
" <th>Sequence</th>\n",
|
320 |
+
" <th>Binding-Active site</th>\n",
|
321 |
+
" </tr>\n",
|
322 |
+
" </thead>\n",
|
323 |
+
" <tbody>\n",
|
324 |
+
" <tr>\n",
|
325 |
+
" <th>791321</th>\n",
|
326 |
+
" <td>A0A0C2CBT0</td>\n",
|
327 |
+
" <td>TDD superfamily, TSR3 family; Protein kinase s...</td>\n",
|
328 |
+
" <td>275; 323; 346</td>\n",
|
329 |
+
" <td>None</td>\n",
|
330 |
+
" <td>MFDVFSGHNDAVLCVQYRDQESLAVSGSADNSIKCWDTRTGRPEMT...</td>\n",
|
331 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
332 |
+
" </tr>\n",
|
333 |
+
" <tr>\n",
|
334 |
+
" <th>1008964</th>\n",
|
335 |
+
" <td>A0A0N4V212</td>\n",
|
336 |
+
" <td>TDD superfamily, TSR3 family; Protein kinase s...</td>\n",
|
337 |
+
" <td>131; 179; 202</td>\n",
|
338 |
+
" <td>None</td>\n",
|
339 |
+
" <td>MVGYGVRARASGYHGRSKFRVKNKRKADKSYAENVSELAADSSRAI...</td>\n",
|
340 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
341 |
+
" </tr>\n",
|
342 |
+
" <tr>\n",
|
343 |
+
" <th>1009019</th>\n",
|
344 |
+
" <td>A0A0N4XGU1</td>\n",
|
345 |
+
" <td>TDD superfamily, TSR3 family; Protein kinase s...</td>\n",
|
346 |
+
" <td>73; 121; 178</td>\n",
|
347 |
+
" <td>None</td>\n",
|
348 |
+
" <td>MGKKGREQHGNKRTNKSRHADAGDAEPLSSHGEEDSESLDESRDDH...</td>\n",
|
349 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
350 |
+
" </tr>\n",
|
351 |
+
" <tr>\n",
|
352 |
+
" <th>1837901</th>\n",
|
353 |
+
" <td>A0A1I8B1G5</td>\n",
|
354 |
+
" <td>TDD superfamily, TSR3 family; Protein kinase s...</td>\n",
|
355 |
+
" <td>40; 88; 111</td>\n",
|
356 |
+
" <td>None</td>\n",
|
357 |
+
" <td>MASTDSSQSSDEDAKVEKAKKMPCILAMFDFGQCDPKRCSGRKLCR...</td>\n",
|
358 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
359 |
+
" </tr>\n",
|
360 |
+
" <tr>\n",
|
361 |
+
" <th>5447097</th>\n",
|
362 |
+
" <td>A0A6V7USP8</td>\n",
|
363 |
+
" <td>TDD superfamily, TSR3 family; Protein kinase s...</td>\n",
|
364 |
+
" <td>61; 109; 132</td>\n",
|
365 |
+
" <td>None</td>\n",
|
366 |
+
" <td>MLFMVVPVLIMMQVDVVAIKKMTNTDSSESSGDDAVDDKSKKMPCI...</td>\n",
|
367 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
368 |
+
" </tr>\n",
|
369 |
+
" </tbody>\n",
|
370 |
+
"</table>\n",
|
371 |
+
"</div>"
|
372 |
+
],
|
373 |
+
"text/plain": [
|
374 |
+
" Entry Protein families \\\n",
|
375 |
+
"791321 A0A0C2CBT0 TDD superfamily, TSR3 family; Protein kinase s... \n",
|
376 |
+
"1008964 A0A0N4V212 TDD superfamily, TSR3 family; Protein kinase s... \n",
|
377 |
+
"1009019 A0A0N4XGU1 TDD superfamily, TSR3 family; Protein kinase s... \n",
|
378 |
+
"1837901 A0A1I8B1G5 TDD superfamily, TSR3 family; Protein kinase s... \n",
|
379 |
+
"5447097 A0A6V7USP8 TDD superfamily, TSR3 family; Protein kinase s... \n",
|
380 |
+
"\n",
|
381 |
+
" Binding site Active site \\\n",
|
382 |
+
"791321 275; 323; 346 None \n",
|
383 |
+
"1008964 131; 179; 202 None \n",
|
384 |
+
"1009019 73; 121; 178 None \n",
|
385 |
+
"1837901 40; 88; 111 None \n",
|
386 |
+
"5447097 61; 109; 132 None \n",
|
387 |
+
"\n",
|
388 |
+
" Sequence \\\n",
|
389 |
+
"791321 MFDVFSGHNDAVLCVQYRDQESLAVSGSADNSIKCWDTRTGRPEMT... \n",
|
390 |
+
"1008964 MVGYGVRARASGYHGRSKFRVKNKRKADKSYAENVSELAADSSRAI... \n",
|
391 |
+
"1009019 MGKKGREQHGNKRTNKSRHADAGDAEPLSSHGEEDSESLDESRDDH... \n",
|
392 |
+
"1837901 MASTDSSQSSDEDAKVEKAKKMPCILAMFDFGQCDPKRCSGRKLCR... \n",
|
393 |
+
"5447097 MLFMVVPVLIMMQVDVVAIKKMTNTDSSESSGDDAVDDKSKKMPCI... \n",
|
394 |
+
"\n",
|
395 |
+
" Binding-Active site \n",
|
396 |
+
"791321 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
397 |
+
"1008964 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
398 |
+
"1009019 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
399 |
+
"1837901 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
400 |
+
"5447097 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... "
|
401 |
+
]
|
402 |
+
},
|
403 |
+
"execution_count": 6,
|
404 |
+
"metadata": {},
|
405 |
+
"output_type": "execute_result"
|
406 |
+
}
|
407 |
+
],
|
408 |
+
"source": [
|
409 |
+
"test_df.head()"
|
410 |
+
]
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"cell_type": "code",
|
414 |
+
"execution_count": 7,
|
415 |
+
"id": "bf55ec46-3685-41a3-a382-46273940ed79",
|
416 |
+
"metadata": {},
|
417 |
+
"outputs": [
|
418 |
+
{
|
419 |
+
"data": {
|
420 |
+
"text/html": [
|
421 |
+
"<div>\n",
|
422 |
+
"<style scoped>\n",
|
423 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
424 |
+
" vertical-align: middle;\n",
|
425 |
+
" }\n",
|
426 |
+
"\n",
|
427 |
+
" .dataframe tbody tr th {\n",
|
428 |
+
" vertical-align: top;\n",
|
429 |
+
" }\n",
|
430 |
+
"\n",
|
431 |
+
" .dataframe thead th {\n",
|
432 |
+
" text-align: right;\n",
|
433 |
+
" }\n",
|
434 |
+
"</style>\n",
|
435 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
436 |
+
" <thead>\n",
|
437 |
+
" <tr style=\"text-align: right;\">\n",
|
438 |
+
" <th></th>\n",
|
439 |
+
" <th>Entry</th>\n",
|
440 |
+
" <th>Protein families</th>\n",
|
441 |
+
" <th>Binding site</th>\n",
|
442 |
+
" <th>Active site</th>\n",
|
443 |
+
" <th>Sequence</th>\n",
|
444 |
+
" <th>Binding-Active site</th>\n",
|
445 |
+
" </tr>\n",
|
446 |
+
" </thead>\n",
|
447 |
+
" <tbody>\n",
|
448 |
+
" <tr>\n",
|
449 |
+
" <th>1</th>\n",
|
450 |
+
" <td>A0A009GI32</td>\n",
|
451 |
+
" <td>3-hydroxyacyl-CoA dehydrogenase family; Enoyl-...</td>\n",
|
452 |
+
" <td>298; 326; 345; 402..404; 409; 431; 455; 502</td>\n",
|
453 |
+
" <td>452</td>\n",
|
454 |
+
" <td>MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA...</td>\n",
|
455 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
456 |
+
" </tr>\n",
|
457 |
+
" <tr>\n",
|
458 |
+
" <th>3</th>\n",
|
459 |
+
" <td>A0A009HWM5</td>\n",
|
460 |
+
" <td>3-hydroxyacyl-CoA dehydrogenase family; Enoyl-...</td>\n",
|
461 |
+
" <td>298; 326; 345; 402..404; 409; 431; 455; 502</td>\n",
|
462 |
+
" <td>452</td>\n",
|
463 |
+
" <td>MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA...</td>\n",
|
464 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
465 |
+
" </tr>\n",
|
466 |
+
" <tr>\n",
|
467 |
+
" <th>4</th>\n",
|
468 |
+
" <td>A0A009I6Q1</td>\n",
|
469 |
+
" <td>3-hydroxyacyl-CoA dehydrogenase family; Enoyl-...</td>\n",
|
470 |
+
" <td>298; 326; 345; 402..404; 409; 431; 455; 502</td>\n",
|
471 |
+
" <td>452</td>\n",
|
472 |
+
" <td>MIHAGNAITVQMLSDGIAEFRFDLQGESVNKFNRATIEDFQAAIAA...</td>\n",
|
473 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
474 |
+
" </tr>\n",
|
475 |
+
" <tr>\n",
|
476 |
+
" <th>7</th>\n",
|
477 |
+
" <td>A0A009NCR4</td>\n",
|
478 |
+
" <td>3-hydroxyacyl-CoA dehydrogenase family; Enoyl-...</td>\n",
|
479 |
+
" <td>298; 326; 345; 402..404; 409; 431; 455; 502</td>\n",
|
480 |
+
" <td>452</td>\n",
|
481 |
+
" <td>MIHAGNAITVQMLSDGIAEFRFDLQGESVNKFNRATIEDFQAAIAA...</td>\n",
|
482 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
483 |
+
" </tr>\n",
|
484 |
+
" <tr>\n",
|
485 |
+
" <th>9</th>\n",
|
486 |
+
" <td>A0A009QK39</td>\n",
|
487 |
+
" <td>3-hydroxyacyl-CoA dehydrogenase family; Enoyl-...</td>\n",
|
488 |
+
" <td>298; 326; 345; 402..404; 409; 431; 455; 502</td>\n",
|
489 |
+
" <td>452</td>\n",
|
490 |
+
" <td>MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA...</td>\n",
|
491 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
492 |
+
" </tr>\n",
|
493 |
+
" </tbody>\n",
|
494 |
+
"</table>\n",
|
495 |
+
"</div>"
|
496 |
+
],
|
497 |
+
"text/plain": [
|
498 |
+
" Entry Protein families \\\n",
|
499 |
+
"1 A0A009GI32 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
|
500 |
+
"3 A0A009HWM5 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
|
501 |
+
"4 A0A009I6Q1 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
|
502 |
+
"7 A0A009NCR4 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
|
503 |
+
"9 A0A009QK39 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
|
504 |
+
"\n",
|
505 |
+
" Binding site Active site \\\n",
|
506 |
+
"1 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
|
507 |
+
"3 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
|
508 |
+
"4 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
|
509 |
+
"7 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
|
510 |
+
"9 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
|
511 |
+
"\n",
|
512 |
+
" Sequence \\\n",
|
513 |
+
"1 MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA... \n",
|
514 |
+
"3 MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA... \n",
|
515 |
+
"4 MIHAGNAITVQMLSDGIAEFRFDLQGESVNKFNRATIEDFQAAIAA... \n",
|
516 |
+
"7 MIHAGNAITVQMLSDGIAEFRFDLQGESVNKFNRATIEDFQAAIAA... \n",
|
517 |
+
"9 MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA... \n",
|
518 |
+
"\n",
|
519 |
+
" Binding-Active site \n",
|
520 |
+
"1 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
521 |
+
"3 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
522 |
+
"4 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
523 |
+
"7 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
524 |
+
"9 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... "
|
525 |
+
]
|
526 |
+
},
|
527 |
+
"execution_count": 7,
|
528 |
+
"metadata": {},
|
529 |
+
"output_type": "execute_result"
|
530 |
+
}
|
531 |
+
],
|
532 |
+
"source": [
|
533 |
+
"train_df.head()"
|
534 |
+
]
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"cell_type": "code",
|
538 |
+
"execution_count": 8,
|
539 |
+
"id": "1a997e94-2bea-4c56-89f2-f10737c96447",
|
540 |
+
"metadata": {},
|
541 |
+
"outputs": [
|
542 |
+
{
|
543 |
+
"data": {
|
544 |
+
"text/plain": [
|
545 |
+
"('065_data/test_labels_chunked_by_family.pkl',\n",
|
546 |
+
" '065_data/test_sequences_chunked_by_family.pkl',\n",
|
547 |
+
" '065_data/train_labels_chunked_by_family.pkl',\n",
|
548 |
+
" '065_data/train_sequences_chunked_by_family.pkl')"
|
549 |
+
]
|
550 |
+
},
|
551 |
+
"execution_count": 8,
|
552 |
+
"metadata": {},
|
553 |
+
"output_type": "execute_result"
|
554 |
+
}
|
555 |
+
],
|
556 |
+
"source": [
|
557 |
+
"import pickle\n",
|
558 |
+
"import random\n",
|
559 |
+
"\n",
|
560 |
+
"def split_into_chunks(sequences, labels):\n",
|
561 |
+
" \"\"\"Split sequences and labels into chunks of size 1000 or less.\"\"\"\n",
|
562 |
+
" chunk_size = 1000\n",
|
563 |
+
" new_sequences = []\n",
|
564 |
+
" new_labels = []\n",
|
565 |
+
" \n",
|
566 |
+
" for seq, lbl in zip(sequences, labels):\n",
|
567 |
+
" if len(seq) > chunk_size:\n",
|
568 |
+
" # Split the sequence and labels into chunks of size 1000 or less\n",
|
569 |
+
" for i in range(0, len(seq), chunk_size):\n",
|
570 |
+
" new_sequences.append(seq[i:i+chunk_size])\n",
|
571 |
+
" new_labels.append(lbl[i:i+chunk_size])\n",
|
572 |
+
" else:\n",
|
573 |
+
" new_sequences.append(seq)\n",
|
574 |
+
" new_labels.append(lbl)\n",
|
575 |
+
" \n",
|
576 |
+
" return new_sequences, new_labels\n",
|
577 |
+
"\n",
|
578 |
+
"# Extract the necessary columns to create lists of sequences and labels\n",
|
579 |
+
"test_sequences_by_family = test_df['Sequence'].tolist()\n",
|
580 |
+
"test_labels_by_family = test_df['Binding-Active site'].tolist()\n",
|
581 |
+
"train_sequences_by_family = train_df['Sequence'].tolist()\n",
|
582 |
+
"train_labels_by_family = train_df['Binding-Active site'].tolist()\n",
|
583 |
+
"\n",
|
584 |
+
"# Get the number of samples in each dataset\n",
|
585 |
+
"num_test_samples = len(test_sequences_by_family)\n",
|
586 |
+
"num_train_samples = len(train_sequences_by_family)\n",
|
587 |
+
"\n",
|
588 |
+
"# Define the percentage of data you want to keep\n",
|
589 |
+
"percentage_to_keep = 100 # for keeping 6.00% of the data\n",
|
590 |
+
"\n",
|
591 |
+
"# Generate random indices representing a percentage of each dataset\n",
|
592 |
+
"random_test_indices = random.sample(range(num_test_samples), int(num_test_samples * (percentage_to_keep / 100)))\n",
|
593 |
+
"random_train_indices = random.sample(range(num_train_samples), int(num_train_samples * (percentage_to_keep / 100)))\n",
|
594 |
+
"\n",
|
595 |
+
"# Create smaller datasets using the random indices\n",
|
596 |
+
"test_sequences_small = [test_sequences_by_family[i] for i in random_test_indices]\n",
|
597 |
+
"test_labels_small = [test_labels_by_family[i] for i in random_test_indices]\n",
|
598 |
+
"train_sequences_small = [train_sequences_by_family[i] for i in random_train_indices]\n",
|
599 |
+
"train_labels_small = [train_labels_by_family[i] for i in random_train_indices]\n",
|
600 |
+
"\n",
|
601 |
+
"# Apply the function to create new datasets with chunks of size 1000 or less\n",
|
602 |
+
"test_sequences_chunked, test_labels_chunked = split_into_chunks(test_sequences_small, test_labels_small)\n",
|
603 |
+
"train_sequences_chunked, train_labels_chunked = split_into_chunks(train_sequences_small, train_labels_small)\n",
|
604 |
+
"\n",
|
605 |
+
"# Paths to save the new chunked pickle files\n",
|
606 |
+
"test_labels_chunked_path = '16M_data/test_labels_chunked_by_family.pkl'\n",
|
607 |
+
"test_sequences_chunked_path = '16M_data/test_sequences_chunked_by_family.pkl'\n",
|
608 |
+
"train_labels_chunked_path = '16M_data/train_labels_chunked_by_family.pkl'\n",
|
609 |
+
"train_sequences_chunked_path = '16M_data/train_sequences_chunked_by_family.pkl'\n",
|
610 |
+
"\n",
|
611 |
+
"# Save the chunked datasets as new pickle files\n",
|
612 |
+
"with open(test_labels_chunked_path, 'wb') as file:\n",
|
613 |
+
" pickle.dump(test_labels_chunked, file)\n",
|
614 |
+
"with open(test_sequences_chunked_path, 'wb') as file:\n",
|
615 |
+
" pickle.dump(test_sequences_chunked, file)\n",
|
616 |
+
"with open(train_labels_chunked_path, 'wb') as file:\n",
|
617 |
+
" pickle.dump(train_labels_chunked, file)\n",
|
618 |
+
"with open(train_sequences_chunked_path, 'wb') as file:\n",
|
619 |
+
" pickle.dump(train_sequences_chunked, file)\n",
|
620 |
+
"\n",
|
621 |
+
"test_labels_chunked_path, test_sequences_chunked_path, train_labels_chunked_path, train_sequences_chunked_path\n"
|
622 |
+
]
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"cell_type": "code",
|
626 |
+
"execution_count": 9,
|
627 |
+
"id": "6479ec75-c1a2-403c-8139-43e9754cc137",
|
628 |
+
"metadata": {},
|
629 |
+
"outputs": [
|
630 |
+
{
|
631 |
+
"data": {
|
632 |
+
"text/plain": [
|
633 |
+
"(220620, 220620, 890637, 890637)"
|
634 |
+
]
|
635 |
+
},
|
636 |
+
"execution_count": 9,
|
637 |
+
"metadata": {},
|
638 |
+
"output_type": "execute_result"
|
639 |
+
}
|
640 |
+
],
|
641 |
+
"source": [
|
642 |
+
"# Load each pickle file and get the number of entries in each\n",
|
643 |
+
"with open(test_labels_chunked_path, 'rb') as file:\n",
|
644 |
+
" test_labels_chunked = pickle.load(file)\n",
|
645 |
+
" num_test_labels_chunked = len(test_labels_chunked)\n",
|
646 |
+
"\n",
|
647 |
+
"with open(test_sequences_chunked_path, 'rb') as file:\n",
|
648 |
+
" test_sequences_chunked = pickle.load(file)\n",
|
649 |
+
" num_test_sequences_chunked = len(test_sequences_chunked)\n",
|
650 |
+
"\n",
|
651 |
+
"with open(train_labels_chunked_path, 'rb') as file:\n",
|
652 |
+
" train_labels_chunked = pickle.load(file)\n",
|
653 |
+
" num_train_labels_chunked = len(train_labels_chunked)\n",
|
654 |
+
"\n",
|
655 |
+
"with open(train_sequences_chunked_path, 'rb') as file:\n",
|
656 |
+
" train_sequences_chunked = pickle.load(file)\n",
|
657 |
+
" num_train_sequences_chunked = len(train_sequences_chunked)\n",
|
658 |
+
"\n",
|
659 |
+
"num_test_labels_chunked, num_test_sequences_chunked, num_train_labels_chunked, num_train_sequences_chunked\n"
|
660 |
+
]
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"cell_type": "code",
|
664 |
+
"execution_count": null,
|
665 |
+
"id": "da7df429-62ab-4b8e-b3dd-7c5a9eb14921",
|
666 |
+
"metadata": {},
|
667 |
+
"outputs": [],
|
668 |
+
"source": []
|
669 |
+
}
|
670 |
+
],
|
671 |
+
"metadata": {
|
672 |
+
"kernelspec": {
|
673 |
+
"display_name": "esm2_binding_py38b",
|
674 |
+
"language": "python",
|
675 |
+
"name": "esm2_binding_py38b"
|
676 |
+
},
|
677 |
+
"language_info": {
|
678 |
+
"codemirror_mode": {
|
679 |
+
"name": "ipython",
|
680 |
+
"version": 3
|
681 |
+
},
|
682 |
+
"file_extension": ".py",
|
683 |
+
"mimetype": "text/x-python",
|
684 |
+
"name": "python",
|
685 |
+
"nbconvert_exporter": "python",
|
686 |
+
"pygments_lexer": "ipython3",
|
687 |
+
"version": "3.8.17"
|
688 |
+
}
|
689 |
+
},
|
690 |
+
"nbformat": 4,
|
691 |
+
"nbformat_minor": 5
|
692 |
+
}
|